
1540-7993/12/$31.00 © 2012 IEEE Copublished by the IEEE Computer and Reliability Societies July/August 2012 35

Internet Infrastructure

Matthew Dunlop, Stephen Groat, William Urbanski, Randy Marchany, and Joseph Tront | Virginia Tech

The problem with static defenses is that adversaries have unlimited time to circumvent them. A moving-
target defense based on the Internet Protocol version 6 can dynamically obscure network- and transport-
layer addresses and help prevent targeted attacks, host tracking, and eavesdropping.

M any security technologies help protect networks
and communicating hosts. This task is more

challenging owing to these technologies’ static nature.
Adversaries can continually launch attacks at these static
defenses until a vulnerability is exploited. You can think
of static security as a Whac-A-Mole game with only one
mole hole. On the other hand, a moving-target defense
“moves” the target, causing adversaries to exhaust their
resources while attempting to locate the target.

We’ve developed a moving-target defense that
leverages the vast address size of the Internet Proto-
col version 6 (IPv6) to present adversaries with more
“mole holes” than are statistically feasible for them to
test. Our technique, the Moving Target IPv6 Defense
(MT6D), operates at the network layer and doesn’t
require any modifications to the existing IPv6 protocol,
making it easy to integrate into networks and defense-
in-depth strategies.

MT6D functions by dynamically obscuring both
sender and receiver addresses (see the “Related Work
in Obscuring Network Addresses” sidebar). Addresses
can rotate at any time without disrupting ongoing ses-
sions or requiring additional handshaking. The more
often addresses rotate, the less time adversaries have to
locate and detect a target host. In IPv6, finding a target

address is statistically infeasible given that a single IPv6
subnet contains 264, or 1.8 × 1019 addresses.

MT6D greatly improves security, privacy, and anon-
ymity. It enhances security because attackers will have
difficulty finding the host, which makes host track-
ing and traffic monitoring more complicated, thereby
increasing anonymity and privacy. This article describes
how we achieve our moving-target defense.

IPv6 Addressing Problem
IPv6 designers developed a technique called stateless
address autoconfiguration (SLAAC) to reduce the admin-
istrative burden of managing the immense IPv6 address
space. Owing to most operating systems’ current accepted
definition of SLAAC, a node’s IPv6 address’s interface
identifier (IID), or host portion, is deterministic across
networks. For the last 64 bits, the node automatically
configures an address on the basis of its network inter-
face’s media access control (MAC) address. Even operat-
ing systems that obscure addresses according to Request
for Comments (RFC) 4941 contain a static IID used for
neighbor solicitation.1 These static IIDs can identify a par-
ticular node, even as the node changes networks.

Using Virginia Tech’s campuswide IPv6 production
network, which supports more than 30,000 IPv6 nodes

The Blind Man’s Bluff Approach
to Security Using IPv6

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 18:36:28 UTC from IEEE Xplore. Restrictions apply.

36 IEEE Security & Privacy July/August 2012

Internet Infrastructure

daily, we were able to validate that IPv6 address track-
ing and monitoring are possible. We conducted testing
with an Android mobile device using MAC-based IIDs
to form wireless IPv6 addresses.

The first part of our test involved tracking the mobile
device as it moved around campus. Geotemporal tracking
was possible because the campus network contains dif-
ferent subnets that cover different geographic areas. We
programmed a script that continually sent echo requests
to the different subnets on campus. When we received an
echo reply, we stored its time and location. Figure 1 dem-
onstrates the results of a successful tracking attempt.

The second part of our test involved traffic monitor-
ing. Our goal was to demonstrate that we could isolate
a node, regardless of subnet, and collect all of its associ-
ated network traffic. We placed a sensor at the network
border to collect all IPv6 traffic leaving the network.
Using a packet sniffer, we successfully filtered the traffic
related to the node in question across different subnets.

System Overview
MT6D lets hosts communicate with each other over
the public Internet while maintaining anonymity from

targeting, tracking, and traffic correlation. The system
does this by tunneling IPv6 packets inside MT6D packets.
The new header created by MT6D dynamically obscures
the source and destination network- and transport-layer
addresses for both communicating hosts. MT6D can also
encrypt the entire tunneled packet to prevent attackers
from analyzing payloads or header fields.

MT6D rotates addresses on the basis of a set of
parameters known to only the two communicating
hosts; there’s no need for a trust model that extends
beyond the communicating pair of nodes. In addi-
tion, MT6D doesn’t require communicating hosts to
exchange parameters prior to each communication ses-
sion, meaning that dynamic addresses can’t be linked to
host identities. A unique feature of MT6D is that the
dynamically obscured addresses can change in the mid-
dle of ongoing sessions without breaking the connec-
tion or requiring a new handshake. This feature allows
addresses to change as often as the security posture dic-
tates, rather than being constrained by ongoing network
sessions. Figure 2 provides a simplified example of two
hosts using MT6D over a network, as well as what this
interaction might look like to attackers.

Related Work in Obscuring Network Addresses

V ictor Sheymov developed a technique to dynamically
obscure cybercoordinates to provide intrusion protection

from certain network attacks.1 However, unlike the Moving Target
IPv6 Defense (MT6D), Sheymov’s design doesn’t provide anonym-
ity because it uses the Domain Name System (DNS) to assign
permanent names to devices. Attackers will have little problem
correlating traffic using hosts’ DNS names. Sheymov also used a
management unit to distribute addresses. In MT6D, communicat-
ing hosts can calculate their own addresses independently.

Russell Fink and colleagues also proposed a technique
to dynamically obscure host addresses, called Adaptive Self-
Synchronized Dynamic Address Translation (ASD).2 ASD is similar
to MT6D in that its objective is to hide communicating hosts’
locations. It does this through a handshake process between a
trusted sender and receiver enclave to assign source and destina-
tion addresses. Obscured addresses are selected from those avail-
able to the ASD enclave. MT6D improves on ASD by letting MT6D
hosts communicate without needing to reauthenticate each time
an address rotates. Reauthentication minimally gives away the
communicating trusted enclaves’ identities. In MT6D, authentica-
tion handshakes aren’t necessary, which provides further protec-
tion for communicating hosts.

Two other proposals obscure addresses to achieve anonymity—
privacy extensions and cryptographically generated addresses
(CGAs). Privacy extensions were designed to protect Internet

Protocol version 6 (IPv6) addresses that use stateless address
autoconfiguration.3 CGAs were designed to securely associate
IPv6 addresses with public keys for use with the Secure Neighbor
Discovery protocol.4 Neither of these schemes dynamically ob-
scures addresses. Once an address is assigned, it remains constant
until the network session is terminated. A third party monitoring
the connection can accomplish both address tracking and traffic
correlation. These techniques also obscure only the source address.
MT6D not only rotates addresses multiple times in a single session
but does so for both the source and destination addresses.

References
1. V.I. Sheymov, Method and Communications and Communication

Network Intrusion Protection Methods and Intrusion Attempt
Detection System, US Patent 2010/0042513 A1, Patent and
Trademark Office, Feb. 2010.

2. R.A. Fink et al., Method and Apparatus for Providing Adap-
tive Self-Synchronized Dynamic Address Translation, US Patent
7,043,633 B1, Patent and Trademark Office, May 2006.

3. T. Narten, R. Draves, and S. Krishnan, “Privacy Extensions for
Stateless Address Autoconfiguration in IPv6,” RFC 4941, Inter-
net Eng. Task Force, Sept. 2007.

4. M. Bagnulo and J. Arkko, “Cryptographically Generated
Addresses (CGA) Extension Field Format,” RFC 4581 (Proposed
Standard), Internet Eng. Task Force, Oct. 2006.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 18:36:28 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 37

Threat Protection
MT6D is designed to protect against attacks targeted
at specific hosts, regardless of whether the threat is
internal or external to the trusted network. Although it
wasn’t designed to protect against unspecified attacks, it
affords some measure of protection there as well.

Targeted Attacks
Targeted attacks are aimed at a particular host or group
of hosts. These attacks can be passive or active.

Passive attacks. Adversaries passively targeting hosts
are interested in discovering host identities and
activities, including where hosts are and what they
are doing there. Adversaries can determine a host’s
identity by observing authenticated network traffic
or SLAAC addresses or by correlating network traf-
fic over time. Discovering a host’s identity is an attack
against anonymity. Discovering a host’s activities is an
attack on privacy.

If adversaries know the targeted hosts’ IPv6
addresses, they can determine host locations. Static
addresses support the extended tracking of hosts
because they remain constant over time. MAC-based
IIDs are an example of addresses that keep a portion
of the address static regardless of the subnet they con-
nect to. MAC-based IIDs also make hosts more suscep-
tible to traffic correlation because IIDs remain constant
regardless of subnet. Even IIDs that don’t remain con-
stant over multiple subnets are typically still static for
each individual subnet.

Active attacks. Adversaries interested in disrupting,
intercepting, or modifying target hosts’ network com-
munications will launch active attacks. These attacks
can come in the form of denial-of-service (DoS) attacks,
with the goal of disrupting network communications, or
man-in-the-middle attacks, with a goal of, for example,
intercepting and modifying network communications.
Hosts with static network addresses are especially sus-
ceptible to active attacks because attacks against a spe-
cific network address either persist or are easily renewed
after the host changes subnets.

MT6D’s responses. MT6D protects against targeted pas-
sive attacks in a few ways. First, it achieves anonymity
by obscuring and frequently rotating host addresses.
It also achieves privacy because adversaries can’t link
addresses to specific hosts at specific locations. Sin-
gle sessions can be spread over multiple sender and
receiver addresses, thus preventing adversaries from
easily determining whether multiple packets belong to
the same host or even the same session. Second, MT6D
can encrypt entire packets prior to tunneling them,

preventing both traffic correlation and observation of
authenticated traffic.

MT6D protects against active attacks by providing
dynamic addressing, which serves two purposes. First,
adversaries can’t easily locate the hosts they’re trying to
target owing to the obscured addresses. Second, adver-
saries who happen to locate a targeted host can only
attack for, at most, the length of time between address
rotations. After such time, adversaries are forced to relo-
cate the target host.

Unspecified Attacks
Adversaries might not be concerned with which spe-
cific hosts they attack. Unspecified attacks might aim
to passively collect network traffic to determine the
number of hosts on a network or the nature of network

Figure 1. Geotemporal plot of a wireless node’s movement in a campus network.
The times on the figure indicate when and where the target host’s interface
identifier was detected as it moved through the campus-area IPv6 network.

Figure 2. Two hosts using the Moving Target IPv6 Defense (MT6D) on a network.
(a) The attacker sees communicating hosts appearing and disappearing on
seemingly random addresses. (b) The actual network configuration.

???

MT6D

(a)

(b)
MT6D

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 18:36:28 UTC from IEEE Xplore. Restrictions apply.

38 IEEE Security & Privacy July/August 2012

Internet Infrastructure

communications. Adversaries might attempt to block
any discovered hosts from using network resources.
Because these adversaries aren’t concerned with vic-
tims’ specific identities, MT6D can’t prevent these
attacks. However, MT6D does limit the damage that
unspecified attacks inflict. For example, adversaries
can’t accurately determine network density, owing to
the number of new addresses they observe. They will
even have difficultly determining the nature of network
communications because a single session might be
spread over multiple source and destination addresses.
Unspecified active attacks are also limited. Because
host addresses constantly rotate, active attacks against
observed hosts are limited to the amount of time
between address rotations.

System Design
Here, we examine MT6D’s design, including dynamic
addressing, IID lifetime, time incrementation, MT6D
tunneling, symmetric keys, and architecture.

Dynamic Addressing
Dynamic addressing nondeterministically modifies
both communicating hosts’ source and destination
network- and transport-layer addresses. Network-layer
addresses are modified by a function obscuring the
communicating hosts’ IIDs using three components—
a host’s 64-bit extended unique identifier IID,2 a sym-
metric key, and a time stamp. Of these three values, only
the symmetric key must be kept secret. The three val-
ues are concatenated and hashed; the obscured IID is
constructed from the leftmost 64 bits of the hash (bits
0–63) and has the form

IID′x(i) = H[IIDx ∙ KS ∙ ti]0→63 , (1)

where IID′x(i) represents the obscured IID for host x at
time ti, IIDx represents the unobscured IID of host x,
KS represents the shared symmetric key, and ti repre-
sents the time at instance i. The leftmost 64 bits of the
hash value are denoted by H[∙]0→63. The MT6D IPv6
address is formed by concatenating the host’s subnet
with IID′x(i) as IP′x(i) = Subnetx ∙ IID′x(i).

In addition, MT6D obscures ports. If port num-
bers are left unobscured, attackers can use the collected
packets’ port numbers to correlate the packets with one
another. MT6D includes two techniques to dynamically
obscure the source and destination ports. The first tech-
nique lets hosts specify a port address range for MT6D
use. Users can also configure MT6D to use common
ports that more closely mimic normal network traffic or
specify a port range that conforms to firewall rules.

The second technique obscures port numbers using
a method similar to the IID obscuration in Equation 1.

For example, obscured ports could leverage the unused
bits of the hash calculation as follows:

Src_Porti = H[IIDSrc ∙ KS ∙ ti]64→79 ;

Dest_Porti = H[IIDDest ∙ KS ∙ ti]64→79.

The source port, Src_Porti, uses the next 16 bits of the
source IID hash (bits 64–79), and the destination port,
Dest_Porti, uses bits 64–79 of the destination IID hash.
The MT6D header uses the obscured port numbers as
its port numbers. Because the current MT6D imple-
mentation encapsulates all packets using the Unreliable
Datagram Protocol (UDP), no other transport-layer
header fields need to be obscured.

IID Lifetime
Hosts using MT6D rotate to the next dynamic address
at every ti increment. At each time increment, MT6D
recalculates the source and destination network- and
transport-layer addresses of both communicating
hosts. MT6D purges the addresses for ti − 1 to prevent
any connection attempts or replay attacks from mali-
cious third parties.

Each time a host recalculates its obscured IID, it
must notify the local gateway device of its new IPv6
address so packets can be properly forwarded. This noti-
fication occurs through the Neighbor Discovery Proto-
col (NDP).3 NDP serves two purposes. First, neighbor
solicitation and advertisement messages perform dupli-
cate address detection to verify that the new address
doesn’t conflict with a preexisting address on the sub-
net.4 Second, NDP ensures proper notification of new
MT6D IPv6 addresses to communicating devices.

At any given time, MT6D devices maintain multiple
IPv6 addresses that correlate with a single obscured
host, which minimizes latency and packet loss. Future
obscured IPv6 addresses are precalculated and bound
to the public-facing network interface controller (NIC)
so that packets aren’t lost during address transition peri-
ods. To accommodate this requirement, host x binds
IPx i(1)′ + at time ti. Addresses for previous time incre-

ments are purged.
The host stores two obscured IPv6 address

states— IPx i()′ and IPx i(1)′ + . The IPx i()′ state cor-
responds to the current computed obscured IPv6
address. This is considered the active state. The
IPx i(1)′ + state corresponds to the obscured IPv6

address that will be used at the next time increment.
The state at ti + 1 is stored but not used until ti incre-
ments to the next time interval. It’s precalculated to
verify the validity of IPx i(1)′ + in the subnet prior to
time ti. Again, the IPx i(1)′ + state is purged from the

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 18:36:28 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 39

host. Any packets delayed past the active state will
be discarded and handled according to the original
packet’s appropriate transport-layer protocol.

Time Incrementation
Time T increments at ti intervals. Time intervals vary
for each communicating address pair. This is done for
both network management and security and privacy
purposes. From a network management perspective,
varying address rotation times lessens the burden on
networking equipment. A large number of MT6D users
on a subnet all changing addresses at the same time have
the potential to burden a router by forcing it to simulta-
neously bind every new address. Varying hosts’ rotation
times distributes the binding of new addresses. From
a security and privacy perspective, rotating addresses
makes identifying which hosts are using MT6D more
difficult. For instance, if all hosts using MT6D change
addresses at the same time, attackers can determine the
number of hosts using MT6D by observing address
changes at rotation times.

MT6D Tunneling
Rather than rewriting each original packet using the
communicating hosts’ obscured source and destination
IPv6 addresses, MT6D encapsulates the original packet
in a tunnel. Tunneling the original packet retains estab-
lished end-to-end connections between the source and
destination as well as flags specific to that session. Not
only does the MT6D application become transparent to
the host, but the MT6D connection can have different
configuration settings.

An MT6D packet is formed by removing the source
and destination addresses from the original packet. The
Ethernet header is also removed to anonymize the MAC
addresses. (This doesn’t present an issue because it will
be reconstructed at the destination MT6D device.) The
entire packet is then prepended with an MT6D header
that is formed using the dynamically obscured source
and destination addresses.

Each packet is encapsulated using UDP to prevent
Transmission Control Protocol (TCP) connection
establishment and termination from occurring each
time an MT6D address rotates. Encapsulating packets
using UDP has minimal effect on the original packet’s
transport-layer protocol. Because transport-layer pro-
tocols are end to end, decapsulation will occur before
the host processes the original packet. A session using
TCP will still exchange all required TCP-related infor-
mation. This information will simply be wrapped in an
MT6D UDP packet. In addition, after a retransmission
timeout, the end host will retransmit any lost packets
that originally used TCP. (Fragmentation isn’t an issue
because it occurs at the source in IPv6.)

MT6D also handles any Internet Control Message
Protocol version 6 (ICMPv6) messages from interme-
diate nodes. In IPv6, intermediate nodes generate many
critical messages, including NDP messages and the
“packet too big” message, which notifies the sender that
the packet exceeds a node’s maximum transmission unit
somewhere along the physical link. Because intermedi-
ate nodes don’t know the sender’s actual address, the
sender’s MT6D device re-forms the packet for delivery
to the sender.

Encrypted tunnel. By default, MT6D encrypts each
original packet before appending it with the MT6D
header. Original packet encryption prevents adversar-
ies from gleaning useful information from the packet.
For example, if the original packet is sent using TCP, the
header is encrypted so attackers can’t correlate network
traffic using the TCP sequence numbers. In addition,
the nature of the network traffic is also kept private.

Another benefit of encrypted tunnels is that hosts
can authenticate traffic to one another while maintain-
ing anonymity. Because the original authenticated pack-
ets are encrypted using a symmetric key, adversaries
can’t detect that the packets are authenticated. In addi-
tion, adversaries won’t find identifiable information
about the communicating hosts from captured packets.

Unencrypted tunnel. MT6D includes the option to tun-
nel unencrypted original packets. Because the source
and destination addresses are stripped from the origi-
nal packet header, address tracking isn’t feasible. In
addition, attackers can’t determine which two hosts
are communicating. However, unencrypted tunnels
don’t prevent traffic correlation because the remainder
of the original headers and payloads stays intact. Traf-
fic correlation requires deep packet inspection because
any relevant header fields are embedded in the MT6D
packet payload. Unencrypted tunnels might be prefer-
able in environments where minimizing computational
expense is more important than preserving privacy. In
both encrypted and unencrypted tunnels, protection
from targeted network attacks is provided.

Symmetric Keys
Symmetric keys in MT6D are preloaded, exchanged out
of band, or exchanged in band. Of the three techniques,
in-band key exchange is the least preferable because it’s
the most susceptible to eavesdropping and can expose
the communicating hosts’ IPv6 addresses. We don’t
attempt to solve key-exchange issues; we only point
out the possible options for establishing keys. It’s worth
noting that even if malicious hosts learn a host’s real
IPv6 address, they can’t match observed MT6D packets
to that particular host.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 18:36:28 UTC from IEEE Xplore. Restrictions apply.

40 IEEE Security & Privacy July/August 2012

Internet Infrastructure

Users should periodically change symmetric keys
to prevent key compromise. MT6D includes a means
to periodically generate new symmetric keys in band
using IPv6 destination options.5 New symmetric keys
exchanged in band in an ongoing MT6D session don’t
expose hosts’ real addresses and are completely trans-
parent to the communicating hosts.

Architecture
Figure 3 illustrates the architecture for a single MT6D
host. The other end of the MT6D tunnel mirrors Fig-
ure 3. MT6D is designed to be virtually transparent to
the user. Users encapsulate each packet and send it to
the internal MT6D NIC. This can be a physical NIC,
when MT6D is implemented in a separate device, or a
virtual NIC, when implemented in the host’s software.
The internal NIC directs all incoming packets to the
MT6D encapsulator.

The MT6D encapsulator transmits all outbound
packets. Upon receipt of a packet, the encapsulator
checks whether an MT6D profile exists for the sender/
receiver pair. The encapsulator maintains a table of all
valid MT6D destinations that a sender trusts, called
profiles. Each profile includes the shared symmetric key
that is valid between the host and each receiver. If no
profile exists, the packet is treated as non-MT6D traffic,
also called unsupported traffic. An optional unsupported
traffic path facilitates communication with hosts that
don’t use MT6D, such as some webservers. Depend-
ing on the desired security level, unsupported traffic is
either blocked or immediately forwarded to the nearest
gateway device. Packets that match profiles are placed in
an MT6D tunnel. The final step is to pass the packet to
the external NIC and transmit it.

The MT6D decapsulator receives all inbound pack-
ets. The external NIC receives each packet and checks
it for an MT6D profile. Those packets that don’t match

profiles are considered unsupported and optionally
delivered immediately to the host. Packets that match
MT6D profiles have the tunnel header stripped off. The
packet is then decrypted, the source and destination
addresses are rewritten to the original packet header, and
the packet is delivered to the host via the internal NIC.

Configuration
Popular configurations include MT6D as integrated
software on the host and as a separate stand-alone
device. Both configurations adopt a trust model that
assumes trust only between the sender and receiver.
In a model in which all insiders are trusted, the stand-
alone configuration can be expanded to the border of a
trusted network.

Integrated Software
Integrating MT6D into the host device has several
advantages, the biggest of which is mobility. With
MT6D on the host device, MT6D can be implemented
on handheld devices. Another advantage is cost.
Because MT6D is loaded directly onto the host device,
additional hardware isn’t necessary. In addition, man-
aging the configuration is easier and there’s no need to
transfer keys or preferences to a separate device.

Stand-Alone Device
Another option is configuring MT6D on a separate
stand-alone device that is transparent to users. To use
the stand-alone MT6D device, users just plug it in and
connect network cables. This is especially useful if users
have devices running different operating systems. In this
configuration, MT6D is platform independent and com-
putational complexity is offloaded to the MT6D device.

MT6D can also be used as a border device in a
trusted environment, similar to a virtual private network
(VPN). The main difference, which is an improvement

Figure 3. MT6D host architecture. The network interface controller (NIC) provides the link to the protected host while
the external NIC connects to the public-facing network. The internal NIC directs outbound traffic to the encapsulator for
packaging before forwarding it to the external NIC. The external NIC receives the inbound traffic, which is decapsulated,
then delivers it to the protected host via the internal NIC. An optional unsupported traffic path facilitates communication
with hosts that don’t use MT6D, such as some webservers.

External
NIC

Internal
NIC

MT6D
decapsulator

MT6D
encapsulator

Unsupported tra�cUnsupported tra�c

MT6D tra�c

MT6D tra�c

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 18:36:28 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 41

over traditional VPNs, is that addresses sent over the
external network are constantly rotating. There are two
benefits to configuring MT6D in this fashion: First,
internal hosts can communicate without performance
degradation. Second, network administrators can man-
age internal host activities, which would be otherwise
obscured in a host-based MT6D implementation.

Test Configuration
We developed an MT6D prototype software imple-
mentation using the Python programming language.
This initial version wasn’t designed to maximize effi-
ciency, but rather to prove the design’s validity.

We used the integrated software configuration; Fig-
ure 3 illustrates the architecture for a single MT6D
host. The internal NIC is virtually configured on each
host to act as the interface between the operating sys-
tem and MT6D. The physical NIC acts as the exter-
nal NIC, transmitting MT6D encapsulated packets to
and receiving them from the network. We installed the
prototype software on two Dell Latitude D620 lap-
tops, each containing an Intel Core Duo T2300 1.66-
GHz processor with 2 Gbytes RAM running Ubuntu
Linux 11.10. Both platforms contain a 10/100 Fast
Ethernet NIC.

We conducted testing on a production IPv6 net-
work. Virginia Tech has a fully functional IPv6 network,
providing globally unique addresses through SLAAC to
every wireless and wired node on the network. The pro-
duction network provided us with results that account
for the effects of actual network traffic on MT6D pack-
ets. Network traffic between the two MT6D-enabled
platforms was routed through the core network, which
routes traffic for more than 30,000 nodes.

Analysis of Results
Our goal was to demonstrate MT6D’s functionality, so
we tested MT6D’s ability to successfully pass different
traffic types. For ease of traffic analysis, we set a fixed
address-rotation interval of 10 seconds. All testing was
done with MT6D using encrypted tunnels, with 128-bit
AES (Advanced Encryption Standard) encryption. To
measure basic functionality, we sent 1,000 ping packets
from the client to the server at a rate of one packet per
second. To test MT6D under a high traffic volume of
connectionless traffic, we sent a series of 10,000- and
50,000-packet ping floods from the client to the server.
To test how MT6D handles connection-oriented traf-
fic, we had one host, configured as a client, use HTTP
over TCP to download files ranging from 500 Kbytes
to 1 Gbyte from the other host configured as a server.
We also examined how MT6D handles real-time traffic
by testing two hosts’ ability to communicate using voice
over IPv6 (VoIPv6).

Connectionless Ping Results
Our initial tests used a 1,000-packet ping. After 10
iterations, the average round-trip latency increase for
an encrypted MT6D ping versus an unencrypted ping
without MT6D was 5.7 milliseconds. The average
packet loss was 0.28 percent. The increased latency was
predominately caused by queuing during neighbor dis-
covery after each address rotation.

Similar tests used ping flood to replicate a high traffic
volume. For a 10,000- and 50,000-packet ping flood, the
average round-trip latency increase was approximately
2.63 milliseconds. The percent packet loss was 0.02 per-
cent. The reduced latency and packet loss occurred due
to a decrease in the ratio of address changes to overall
packets sent.

Connection-Oriented Results
To test connection-oriented traffic, we had one host
download files from the other host. File sizes ranged
from 500 Kbytes to 1 Gbyte. The average throughput
for all the file downloads was just under 2 Mbytes per
second. Table 1 illustrates the average download speeds
as well as the percentage of retransmission that occurred
during testing.

Real-Time Traffic Results
We tested MT6D’s ability to handle real-time network
traffic by setting up a VoIPv6 connection between the
two test hosts. To establish the VoIPv6 connection, we
used Mumble (www.mumble.com) because of its IPv6
support. In our tests, we set the voice quality to the max-
imum setting available, 96 Kbits per second. There was
no noticeable delay between the two communicating
hosts. The average latency during our testing was 3.34
milliseconds with 0.10 percent packet loss.

These results demonstrate that MT6D can success-
fully pass both connectionless and connection-oriented
traffic. MT6D was able to rotate addresses without
interrupting ongoing sessions between hosts using

Table 1. Average transmission speed and percentage of
retransmissions for connection-oriented network traffic using MT6D.

Network traffic type Transmission
speed (Mbytes/s)

Retransmissions
(%)

TCP file transfer (500 Kbytes) 1.87 0

TCP file transfer (1 Mbyte) 1.96 0

TCP file transfer (10 Mbytes) 1.83 0.33

TCP file transfer (50 Mbytes) 1.86 0.44

TCP file transfer (500 Mbytes) 1.78 1.73

TCP file transfer (1 Gbyte) 1.79 1.80

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 18:36:28 UTC from IEEE Xplore. Restrictions apply.

42 IEEE Security & Privacy July/August 2012

Internet Infrastructure

MT6D and without requiring additional handshak-
ing. Although some additional latency and packet loss
occurred owing to the use of MT6D, it wasn’t enough to
significantly affect network performance. Even VoIPv6
communications weren’t noticeably affected.

Limitations
MT6D still faces several limitations that potential users
should keep in mind.

Attacks at Other Layers
Because MT6D is a network-layer defense, it doesn’t pre-
vent attacks from occurring at other layers. For example,
MT6D can’t prevent attackers from capturing MAC
addresses because these attack types occur at the data-link
layer. This isn’t a major issue for two reasons: First, pack-
ets tunneled using MT6D aren’t sent using the protected
host’s MAC address. However, the obscured MAC can’t
change as often as network addresses because changing
a system’s hardware address requires bringing down the
adapter. Second, lower-layer attacks generally require
attackers to be on the same network as the target host.

Network Protocol
MT6D is designed to operate only on an IPv6 net-
work. Although MT6D could feasibly be redesigned to
operate on an Internet Protocol version 4 (IPv4) net-
work, there isn’t enough unoccupied address space to
facilitate it. Because MT6D “hops” between different
addresses, employing it on a densely populated subnet
would cause numerous collisions.

However, this isn’t a concern on IPv6 subnets
because even heavily populated subnets won’t occupy
much of the available address space in the foreseeable
future. The likelihood of an address collision on an IPv6
subnet can be written as Pc = h/264, where Pc represents
the probability of a collision and h represents the num-
ber of other hosts on the subnet.

Communication Paths
Including an unsupported communications path in
MT6D could result in attackers learning a host’s actual
address. However, in environments requiring a high secu-
rity level, users can disable the unsupported commu-
nications path to mitigate this limitation. Disabling the
unsupported communications path would be useful when
MT6D is used on a classified government network that
doesn’t allow communication with the public Internet.

Scope of Protection
MT6D operates similarly to VPN technologies in that
both endpoints require MT6D to communicate securely.
This means MT6D can’t feasibly protect the public
Internet. However, this doesn’t mean that MT6D can’t

provide secure communications with servers. Even pub-
lic servers can be configured with an MT6D channel to
handle nodes that use MT6D as well as those that don’t.

It’s worth noting that protection of the public Inter-
net was never MT6D’s goal. MT6D meets needs simi-
lar to those of Internet Protocol Security—neither was
designed to be a public infrastructure scheme.

Network Administration
Implementing MT6D on individual hosts could ham-
per a network administrator’s ability to monitor those
hosts’ behaviors. Applying MT6D at the network bor-
der could protect internal users while still letting admin-
istrators monitor internal traffic. However, with any
security mechanism, there are trade-offs that adminis-
trators must weigh. For example, users might choose to
use MT6D regardless of whether network administra-
tors allow it. This is particularly true of malicious users.
It’s important that administrators are aware of technolo-
gies like MT6D and how they can affect networks.

C ertain applications would greatly benefit from
our technology. One potential application of

MT6D is securing sensor networks, such as the smart
grid. Attacks against sensors could deny critical infor-
mation communications or expose sensitive infor-
mation. MT6D prevents attackers from locating and
subsequently targeting sensors. MT6D can also secure
peripherals, such as printers and faxes. Typically, these
devices aren’t protected and are thus easy targets for
attackers. MT6D can transparently protect these
devices without requiring expensive modifications to
the peripheral. Our technology can also provide secure
communications for military or intelligence agents,
corporate entities, or e-commerce. VPNs, which are
susceptible to DoS at the endpoints, can benefit from
MT6D as well: a VPN using MT6D will have a moving
endpoint that attackers statistically can’t target.

The next step in MT6D development is to optimize
the design for inclusion on handheld devices and tab-
lets. With migration to IPv6 on the horizon, it’s impor-
tant to prepare the next generation of IPv6 security
solutions. MT6D is one of these solutions.

References
1. T. Narten, R. Draves, and S. Krishnan, “Privacy Exten-

sions for Stateless Address Autoconfiguration in IPv6,”
RFC 4941, Internet Eng. Task Force, Sept. 2007.

2. R. Hinden and S. Deering, “IP Version 6 Addressing
Architecture,” RFC 4291, Internet Eng. Task Force, Feb.
2006.

3. T. Narten et al., “Neighbor Discovery for IP version 6
(IPv6),” RFC 4861, Internet Eng. Task Force, Sept. 2007.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 18:36:28 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 43

4. S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless
Address Autoconfiguration,” RFC 4862, Internet Eng.
Task Force, Sept. 2007.

5. S. Deering and R. Hinden, “Internet Protocol, Version
6 (IPv6) Specification,” RFC 2460, Internet Eng. Task
Force, Dec. 1998.

Matthew Dunlop recently completed his doctoral
degree in computer engineering at Virginia Tech. His
research interests include IPv6 and network security.
Dunlop has an MS in electrical and computer engi-
neering from Carnegie Mellon University and an MS
in engineering management from the University of
Missouri at Rolla. He’s a member of IEEE. Contact
him at dunlop@vt.edu.

Stephen Groat is a doctoral student at Virginia Tech in
computer engineering. His research interests include
networking and network security. Groat has an MS in
computer engineering from Virginia Tech. Contact
him at sgroat@vt.edu.

William Urbanski is a network security advisor at Dell
SecureWorks. His research interests include informa-
tion security and online criminality. Urbanski has a BS

IEEE Computer Society’s Conference Publishing Services (CPS) is now offering
conference program mobile apps! Let your attendees have their conference
schedule, conference information, and paper listings in the palm of their hands.

The conference program mobile app
works for Android devices, iPhone,
iPad, and the Kindle Fire.

CONFERENCES
in the Palm of Your Hand

For more information please contact cps@computer.org

in computer science from the University of Georgia.
Contact him at will.urbanski@gmail.com.

Randy Marchany is the Virginia Tech information tech-
nology security officer and director of the Virginia
Tech IT Security Lab. His research interests include
Internet security vulnerabilities and denial-of-service
attacks. Marchany has an MS in electrical engineering
from Virginia Tech. Contact him at marchany@vt.edu.

Joseph Tront is a computer engineering and electronics
professor in the Bradley Department of Electrical and
Computer Engineering at Virginia Tech. His research
interests include integrated circuit design and testing,
bio-microelectronic sensors, fault-tolerant autono-
mous computers, and space radiation’s effects on
integrated circuits. Tront has a PhD in electrical engi-
neering from the State University of New York at Buf-
falo. He’s a senior member of IEEE CS, the Special
Interest Group on Design Automation, the ACM, and
the Academy of Teaching Excellence. Contact him at
jgtront@vt.edu.

Selected CS articles and columns are also available for free
at http://ComputingNow.computer.org.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 18:36:28 UTC from IEEE Xplore. Restrictions apply.

