
Scaling IPv6 Address Bindings in Support of a

Moving Target Defense

Christopher Morrell, J. Scot Ransbottom, Randy Marchany, Joseph G. Tront

Bradley Department of Electrical and Computer Engineering, Virginia Tech Blacksburg,

Virginia, USA

Email: {morrell, jransbot, marchany, jgtront}@vt.edu

Abstract—Moving target defense is an area of network security
research in which machines are moved logically around a network
in order to avoid detection. This is done by leveraging the

immense size of the IPv6 address space and the statistical
improbability of two machines selecting the same IPv6 address.
This defensive technique forces a malicious actor to focus on the

reconnaissance phase of their attack rather than focusing only on
finding holes in a machine’s static defenses. We have a current
implementation of an IPv6 moving target defense entitled MT6D,

which works well although is limited to functioning in a peer to
peer scenario. As we push our research forward into client server
networks, we must discover what the limits are in reference to

the client server ratio. In our current implementation of a simple
UDP echo server that binds large numbers of IPv6 addresses to
the ethernet interface, we discover limits in both the number of

addresses that we can successfully bind to an interface and the
speed at which UDP requests can be successfully handled across
a large number of bound interfaces.

Keywords—Moving Target Defense; IPv6; Sockets; Network-

ing.

I. INTRODUCTION

Improving security by hiding targets within a network is an

active area of network security research. This effort occurs in

conjunction with the current use of traditional security method-

ologies where network and network resources are treated like

castles with layered defenses built up around them. A common

method to achieve this machine hiding involves leveraging

the immense space available within IPv6 in order to move

a machine logically around a subnet by reassigning layer 3

addresses at a frequent interval. By coordinating this change

in either a scheduled manner, or permitting hosts to calculate

addresses for both themselves and their peer, we can ensure

that two communicating machines can always find each other

in the network. This methodology is often referred to as a

moving target defense. There is a fairly small community of

researchers working on this problem, including Zhuang et al

in [1] and Yackoski et al in [2]. While much of the work

that has been done to this point focus on the theories around

a moving target defense, researchers at Virginia Tech have

designed, implemented, and published a moving target defense

algorithm entitled Moving Target IPv6 Defense or MT6D [3].

In its original design and implementation, MT6D was fo-

cused solely on peer to peer networks, while generally leaving

the much more common client server networks untreated.

Our intent in this paper is to take the first steps toward

pushing MT6D in the direction of providing client server

network support. In an ideal situation, each client would have a

distinct address on the server that it would communicate with.

Alternatively, a server could maintain a single set of hopping

addresses, and every client would use the same address. The

former provides better privacy with a higher cost of resources,

while the latter is simpler but reduces the privacy provided by

the algorithm.

This paper focuses on the first step of identifying and

quantifying the scaling problems that will occur when we

bind a large number of addresses to a host and permit a large

number of clients to communicate with the server on those

addresses. Ultimately, we must understand how many clients

we can actually support with a single MT6D server. To this

end, we must determine how many IPv6 addresses can be

supported in the modern Linux kernel and how quickly a server

can respond to client requests when it is bound to some large

number of addresses.

We explore those two limits by implementing a simple UDP

echo server that binds some number of addresses and listens

for requests on all of them. Upon receipt of the request, the

server should respond with some data. In this paper, we will

give a brief treatment of IPv6 and MT6D so that the reader

has the requisite understanding of both protocols to further

understand this research area. We will follow by explaining our

motivation for conducting experiments in the manner that we

did. We will discuss the limits that we reached on binding IPv6

addresses in our implementation, followed by a discussion

of the ideal parameters for our echo server. Finally, we will

discuss our next research steps in the future work section

before we conclude.

II. BACKGROUND

A. IPv6 Overview

Internet Protocol version 6 (IPv6) is the 128-bit replace-

ment to the aging 32-bit IPv4 standard. IPv6 was originally

published as part of RFC 2460 [4] in December of 1998,

when it was realized that IPv4 would not be able to support

the number of IP addresses that would be required as the

Internet continued to grow. The biggest benefit provided by

the move to IPv6 is the immense growth in the number of

addresses available as we move from 32 bits to 128 bits. As

a simple demonstration of the vast quantity of addresses in

IPv6, there are sufficient addresses that one could assign more

The 9th International Conference for Internet Technology and Secured Transactions (ICITST-2014)

978-1-908320-39/1/$25.00©2014 IEEE 440

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 19:05:22 UTC from IEEE Xplore. Restrictions apply.

that 667,000 addresses per square nanometer on the surface

of Earth, including the oceans. To truly bring this number to

scale, realize that the area of the tip of an average human

hair is approximately 2 billion square nanometers. For direct

comparison, we should see how this compares to the IPv4

addressing scheme that uses only 32 bits. Instead of addressing

nanometers as with IPv6, we will address kilometers of the

surface of the Earth. In IPv4, each square kilometer on the

surface of the planet gets only 8 addresses. We use this extreme

difference in size to try to communicate an understanding of

the immense space gained by simply adding 96 bits to our IP

addresses.

In IPv6, the address is generally split into three pieces,

representing different parts or layers of the network. The first

48 bits are used to represent the routing prefix, the next 16

bits represent the subnet identification, and the last 64 bits,

also known as the interface identifier (IID), represent the host.
This means that on any subnet, there are approximately 264

or 1.845x1019 distinct IIDs available. In stark contrast, there

are only a total of 232 or 4 billion addresses available in the

entirety of the IPv4 address space. Due to the limited address

space in IPv4, assigning addresses requires a great deal of

planning and close control from network administrators in

order to ensure efficient usage. In fact, the IPv4 addressed

internet relies in large part to RFC 1918 [5] private addresses

in order to function. These private addresses permit a large

number of addresses to masquerade as a single address. In

contrast, it is completely feasible to permit a client to select

their own IID in IPv6, since the probability of a collision

is almost zero. In fact, according to the birthday paradox, it

would take approximately 264/2 or just over 4 billion attempts

to have a greater than 50% likelihood of a collision inside of

a 64 bit IPv6 subnet. This fact permits the majority of IPv6

networks to rely on IPv6 Stateless Address Autoconfiguration

(SLAAC) in order to assign addresses to their clients.

SLAAC is an automatic addressing scheme that was for-

malized in RFC 2462 [6] and updated in RFC 4862 [7] that

provides a machine with the ability to generate its own an

IPv6 address. In SLAAC, clients ask their local router for the

routing prefix and subnet id portions of the address by sending

a router solicitation message to the nearest router. The router

responds with a router advertisement message which gives

the client the first half of their IPv6 address. The host then

generates its own IID and appends it to the prefix and subnet id

that were received from the router, and assigns the address to

its network interface. IID generation algorithms vary, but are

usually based on the network interface card’s Media Access

Control (MAC) address. Since a machine will likely use the

same method each time it generates an IID, it is probable that

the IID will be the same for a given machine.

B. Moving Target IPv6 Defense

Moving Target IPv6 Defense (MT6D) was introduced as

a specific solution to the moving target defense problem,

and was originally proposed by Dunlop, et al. in a 2011

paper entitled MT6D: A Moving Target IPv6 Defense [3].

MT6D leverages the enormity of the IPv6 address space

by allowing multiple hosts to assign themselves new IPv6

addresses at arbitrary but pre-determined time intervals, while

they maintain the ability to communicate with each other. As

with SLAAC, the large number of addresses available within

the IPv6 address space gives an almost zero probability of an

address collision occurring.

The addresses used for reassignment are created through

the MT6D algorithm, which uses the machine’s SLAAC

generated or statically assigned IPv6 Interface Identifier (IID),

a passphrase, and the current time. Configuration is required

so that the machines have a pre-shared copy of the seed IID

and the passphrase. The algorithm also requires a relatively

close time synchronization, usually within several seconds.

Machines are also provided with the seed IID, IPv6 prefix, and

subnet ID of the host that they will be communicating with

via an MT6D connection. With all of the address generation

information available to both hosts, machines are able to

calculate not only their own MT6D addresses, but also the

MT6D addresses of their peer. By defaults, hosts generate

and assign new addresses every 10 seconds. Additionally, each

host keeps its previous, current, and next address assigned to

its interface in order to prevent packet loss due to latency

in the network. MT6D relies on UDP for transport, and

simply encapsulates an entire IPv6 packet inside of an MT6D

generated UDP datagram and MT6D generated IPv6 packet.

The authors have engineered MT6D in such a way that they

can keep TCP sessions active, even during MT6D address

rotations.

This ability for a machine to logically move throughout

the network at will forces a shift in the way an attacker

does business. Rather than following the traditional phases

of reconnaissance and exploit, MT6D forces an adversary to

commit all of their resources to the reconnaissance phase.

Additionally, MT6D does not preclude someone from applying

standard security defenses to a machine, rather adds a layer

of anonymity on the network on top of the standard security.

MT6D was originally designed, and has only been imple-

mented up to this point to function as a peer to peer service.

While it is theoretically possible to stretch MT6D to support

several more machines, it was never designed with a client

server network in mind. While peer to peer networks are an

extremely powerful and useful section of the Internet, a great

deal of data is exchanged between clients and servers. For

example, each time you browse a webpage, upload a file to

cloud based storage, or send an email, your machine is a client,

interacting directly with a server. It is with this in mind, that

we are working towards extending MT6D to support client

server networks.

C. Methodology

The first step in designing and building an MT6D server, is

to understand what is possible given the capabilities provided

in the modern Linux kernel using standard commodity hard-

ware. We must first determine the number of addresses that a

machine can bind to its network interface. This will help us

The 9th International Conference for Internet Technology and Secured Transactions (ICITST-2014)

978-1-908320-39/1/$25.00©2014 IEEE 441

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 19:05:22 UTC from IEEE Xplore. Restrictions apply.

to determine how many clients we can support with a single

server. Additionally, we must determine how quickly we can

send data to the server considering the number of addresses

that it has currently bound. This will help us to determine the

maximum possible rate of data as the number of active clients

changes.

A number of different methods can be used to bind and

unbind addresses within Linux. The simplest is to call ifconfig

[8] from within your server, and allow the utility to handle

the address binding and unbinding for you. However, this

is extremely inefficient. Each time ifconfig is called, a new

process must be spun up in order to handle the request.

Alternatively, the server can send Input Output Control (ioctl)

[9] or netlink [10] messages to the kernel. For our experiments,

we chose to use netlink messages due to their ease of use and

speed.

As there are a number of methods for binding and unbinding

addresses, there are also a number of methods that can be used

to listen for, receive, process, and respond to client requests

on a server. One of the easiest and most common methods is

to use standard BSD sockets [11]. Sockets are well supported,

but require a reliance on the Linux kernel to process packets

from the hardware up to the layer at which the socket is

listening before being handed over to the server. Rather than

using sockets, it is possible to use zero copy networking [12],

where a server is permitted to reach past the kernel all the

way to the device driver, reducing the reliance on the kernel’s

processing, reducing the need for multiple context switches,

and reducing the number of copies that are required when a

packet is moved from the hardware to the server. While zero

copy networking is more efficient than standard sockets, we

decided to use sockets for these experiments, leaving zero copy

networking for future work.

D. Network Service Performance Metrics

A number of network services may find some benefit in be-

ing obscured with a moving target defense connection. If I am

surreptitiously attempting to share data with someone, it would

be beneficial to have my location on the network obscured. I

could even use Voice over IP (VoIP) services and wish to

have the location of my phone obscured within the network.

While both of these examples could potentially benefit from

implementation of a moving target defense, the metrics used

to define the usability of each are significantly different. If I

am uploading a file or downloading a webpage, some delay in

the connection with my server may be acceptable, while delay

in connection when dealing with a real time service such as

VoIP must be much less.

In his book Usability Engineering [13], Jakob Nielsen

discusses acceptable response times in order to give a user

different feelings about the content that they are interacting

with. According to Nielsen, responses received within a 0.1

second window make the user feel as though the system reacts

instantaneously. The author states that a 1 second response

time is the generally accepted upper bound for the system to

not interfere with a user’s flow of thought, although they will

notice that there is some delay in the system. We take these

ideas and rough numbers as inspiration and desire to keep

our server response time as close to the 0.1 second mark as

possible. In future sections, we will see how this will help us

to dictate how many addresses and thus how many clients we

are able to support on our server.

In the next two sections, we will discuss in more depth the

implementation of our server and the results of the experiments

that were run in support of our understanding the limits of

building a server that listens on numerous IPv6 addresses at

the same time.

III. TIME TO BIND ADDRESSES

How many IPv6 addresses can be bound to a single machine

at any give time, while still permitting the machine to function

on the network? Identifying this limit will give us an upper

bound of the number of clients that our MT6D server will

realistically be able to support at a single time. In order

to discover this limit, we built a simple program in C that

generates a list of IPv6 addresses, binds those addresses to

the machine’s eth0 interface, and once complete, unbinds those

addresses from the eth0 interface.

We used a Dell OptiPlex 9020 running 64-bit Debian

Wheezy [14]. The machine has an Intel i7-4770 processor run-

ning at 3.4Ghz, 16GB of RAM and an Intel I217-LM Gigabit

Ethernet network interface card. The experiment consists of

a program written in C that uses the rtnetlink [10] library in

order to send messages the the kernel for IP Address binding

and unbinding. The program begins by generating a list of n

IPv6 addresses, where n varies from 1 to 70000 in increments

of 5000. We continue sending netlink RTM NEWADDR (bind)

messages for each address as quickly as possible. Once all

addresses were successfully bound, we send RTM DELADDR

(unbind) messages as quickly as possible. Address generation,

binding, and unbinding were timed individually, and each mea-

surement was averaged across the total number of addresses

that were bound and unbound. Each set of parameters was run

5 times and averaged, resulting in the data that is displayed in

Fig. 1.

We found that the average address generation time increased

as addresses increased as expected, and our implementation

had a maximum time of 2 milliseconds to generate 70000

IPv6 addresses. Additionally, we found that the average time

to generate an address did not increase, and was between 16

and 48 nanoseconds regardless of the number of addresses that

we generated.

We found that there was a roughly linear increase in time as

we increased the number of addresses to bind up to the 55000

address mark. Above 55000 addresses, we found an expo-

nential increase in time for each address bound. The average

time to bind addresses increases from 176 microseconds at 1

address to 3.9 milliseconds at 50000 addresses. After 55000

addresses, we quickly increase to 11 ms, 50 ms, and 101 ms,

for 60000, 65000, and 70000 addresses respectively. The total

time required to bind addresses shows a dramatic increase

The 9th International Conference for Internet Technology and Secured Transactions (ICITST-2014)

978-1-908320-39/1/$25.00©2014 IEEE 442

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 19:05:22 UTC from IEEE Xplore. Restrictions apply.

Figure 1. This chart shows the average time required to generate, bind, and
unbind an IPv6 address based on the given number of addresses.

from 216 seconds for 55000 addresses to 7108 seconds for

70000 addresses.

While time to bind has a dramatic increase above 50000

addresses, time to unbind continues to follow a linear time

increase all the way up to 70000 addresses. At its slowest,

the average time to unbind an address was approximately 5

milliseconds.

We also ran some basic computer and network functionality

tests after addresses were bound in order to discover whether

our limitation was the actual binding of the addresses, or

the memory required to keep the addresses bound. Even

with 70000 addresses bound to our machine, we did not see

a noticeable slowdown in the performance of our machine

through both basic computing and performing a large file

download from the internet.

Experimental results lead us to to the determination that our

current implementation has an upper bound of approximately

55000 actively bound IPv6 addresses. It is possible to bind

more than 55000 addresses, although the time required per

address becomes longer than our desired address rotation

period as described in the MT6D section. This upper bound

has also helped us to determine our limit when conducting our

next set of experiments, which focus on tuning our server for

best performance.

IV. SERVER RESPONSE TIME

Previous experiments have provided us with a clear un-

derstanding of what the limits of our implementation are in

regards to the maximum number of addresses that we can

manage. We must now determine what the maximum rate of

data receipt is for the server. In order to determine these values,

we built a UDP echo server that listens on all bound IPv6

addresses on UDP port 3540. When a request is received,

the server responds with the requested data which has been

calculated at ten times the size of the request. This increase

in size of the response is intended to replicate the standard

request/response size ratio that is inherent in most web based

services. In our implementation, we use standard BSD sockets

[11] with AF INET6 and SOCK DGRAM.

Once addresses are bound, we spawn a listener thread and

a worker thread. The listener thread simply receives UDP

requests and queues them in a POSIX message queue [15]

as quickly as they are received. The worker thread looks for

messages in the queue, and upon receipt of a message, sends

the data back to the requesting client ten times. As return

packets are built, we ensure that the source address is the

actual address where packet was received, rather than allowing

the kernel to address the packet for us. We discovered that by

default, the kernel that we were using would use the highest

IPv6 address as the source if not modified otherwise. Since

the worker is sending ten times the data that the listener

is receiving, it is apparent that the worker thread is the

slowest part of the server. Earlier implementations of the

server attempted to leverage multithreading, but we found that

contention on the call to BSD sockets sendmsg() resulted in

much poorer performance.

A production implementation of our server would be con-

currently communicating with n clients, where n is some

number up to 55000. Rather than dealing with the issues

that come with managing a group of clients at that scale, we

chose to use some simple traffic generation tools in order to

replicate the real world. We began by building a client traffic

generator around the Python packet generation tool, Scapy

[16], but found that the Python interpreter did not generate

traffic quickly enough to put any stress on the server. We

attribute this primarily to the limitation of using the Python

interpreter, rather than using compiled code. Through further

research, we discovered a C++ library that provides the ease of

use of Scapy with the efficiency of compiled C++ code entitled

libtins [17]. When our client was permitted to send traffic

without delay, we were able to achieve a rate of approximately

150,000 packets per second (pps). We used a simple sleep

timer within the client to allow us to control our rate of

transmission in the range of 1900 to 150000 pps.

In all of our experiments, we had the server bind n addresses

and create a UDP socket in order to listen on all addresses

before the client was allowed to proceed. Once the server

was finished and idly listening, the client would send 250,000

UDP requests to the server at the dictated packets per second

interval. Destination IP addresses were selected at random

from the pool of addresses that the server had bound. We

counted receipt of fewer than 90% of those 250,000 requests

to be a failure, and discounted those experiment parameters

from the data collection. For this set of experiments, we varied

packets per second in the range of 1900 to 150000 pps and

the number of addresses in the range from 1 address to 55000

addresses in increments of 5000 addresses. The range of packet

The 9th International Conference for Internet Technology and Secured Transactions (ICITST-2014)

978-1-908320-39/1/$25.00©2014 IEEE 443

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 19:05:22 UTC from IEEE Xplore. Restrictions apply.

Figure 2. This chart shows the rate of data transmission in packets per
second against the number of addresses bound on the server resulting in the
ideal values based on the necessary server response time. The Y axis data is
represented using a logarithmic scale.

results that we can analyze all the way to 55000 addresses.

Unfortunately, we can see that we have a maximum possible

data rate of 2000 packets per second when we are bound to

55000 addresses. This means that on average, our server would

only be able to support 55000 clients if their individual data

rates averaged one packet every 27 seconds. This is of course

fully unacceptable in almost every situation where client server

interaction is required.

We can see though that performance increases as the number

of addresses decreases, reaching a maximum supportable data

rate of 150000 packets per second when 10000 or fewer

addresses are bound to the server. We find in counter to the

extreme case of 55000 addresses that a situation where 10000

addresses are bound, our clients can sustain an average data

rate of approximately 150 packets per second. This of course

is still not ideal, but does give us a base line from which to

build.

By comparing our results with the desired results described

in section II.D., we see that we must limit our server to

approximately 10000-15000 addresses bound. While this is a

great step forward in building a moving target defense client

server network, it is still a severe limitation that we would like

to remove. In the next section, we will discuss in some detail

the next steps we plan to take in order to remove or reduce

these limitations.

speed does not fall on clean numbers due to the fact that

we were varying sleep time on the server, which indirectly

impacted our packets per second rather than dictating a specific

packet per second number. Experiments were run on each set

of parameters five times and results were averaged.

In Fig. 2 we can see the results of the described experiments.

On the X axis, we see the range of addresses bound to the

ethernet interface from 1 to 55000, while the Y axis gives

us the range of packets per second from 1900 on the bottom

to 150000 at the top. The data follows a nearly logarithmic

function, so the Y axis is presented in a logarithmic scale

with 200000 as the maximum value on the axis and 1000

as the minimum. The four lines represent the combination of

pps and address number that resulted in a particular average

response time. As the legend demonstrates, red represents an

average response time of less than 1 ms, blue represents an

average response time of less than 5ms, green represents an

average response time of less than 50ms and purple represents

an average response time of less than 100ms.

We show the results with differing average response times

due to the fact that different services require a different

response time from a server. For example, real time services

have much lower tolerance for delay from the server, while

other non-realtime services such as e-mail are more tolerant

of delays from the server.

In Fig. 2, we can see that we did not have any tests with

more than 30000 addresses that were able to respond in less

than 1 millisecond, no matter the rate of requests. Once we

consider a 5 millisecond response time as acceptable, we have

V. FUTURE WORK

Two primary factors limit the performance of our server.

These factors are the time required to bind an address and

the time required to receive, process, and reply to a UDP

request. We realize that we may not be using the most efficient

techniques in order to execute these tasks, so we plan to

continue research in these areas to discover, implement, and

test alternative methods that may improve the performance of

our server.

As discussed in section II.C., there are several methods that

can be used to bind IP addresses to an interface. We only

analyzed two, focusing on either using ifconfig or sending

netlink messages. As reported, we found that there was a great

performance increase by moving from the former to the latter,

but we plan to explore ioctl in more depth. We will conduct a

direct comparison between using netlink messages and ioctl in

order to more clearly determine which is the preferred method

in regards to performance. Additionally, there is the possibility

that we could bypass the utilities that are provided by the

operating system and reach directly into the data structures that

hold IP addresses and manipulate them manually. Of course,

there is the potential for great risk in using this method, and

more research is required to determine if it is feasible. We

must determine what the risks are and if those risks provide

us with some performance improvement over the methods that

we are currently using.

Also in section II.C., we used standard BSD sockets with

SOCK DGRAM UDP sockets to send and receive data be-

tween the machines on our network. We know that this is not

the most efficient means of passing data onto a network, but

The 9th International Conference for Internet Technology and Secured Transactions (ICITST-2014)

978-1-908320-39/1/$25.00©2014 IEEE 444

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 19:05:22 UTC from IEEE Xplore. Restrictions apply.

it is the easiest and most well supported. We plan to identify

and explore several other methods that can be used to send and

receive data and compare them with UDP sockets to identify

the method that gives us the best performance possible.

In particular, we will explore the use of raw sockets[11],

zero copy networking[12], [18], and the PF Ring framework

[19] in order to improve server efficiency. Raw sockets will

allow us to build our network datagram manually, rather than

relying on the Linux kernel. It is possible that we could

build our IPv6 and Ethernet headers more efficiently than

the kernel does, thus resulting in faster data processing. Zero

copy networking is a method in which the ring buffer that

is normally used by the kernel’s network stack for send and

receive queues is moved from kernel space into user space.

This simple technique eliminates the need for the server to

copy data from kernel space to user space on receipt or to copy

data from user space to kernel space on send. This technique

can also be implemented in such a way that system calls are

nearly eliminated, thus resulting in far fewer time consuming

context switches. The final method that we plan to explore is

PF Ring, which is really a framework that exploits the power

zero copy networking. PF Ring implements most of the low

level code required to make zero copy networking function,

thus abstracting much of the problem away from the server

implementer.

VI. CONCLUSION

We have shown the limitations in building a server that must

bind to and listen on many IPv6 addresses. This particular

problem is something that is exceedingly unique in the world

of IPv6 and moving target defense. We believe that we have

shown that building an IPv6 moving target defense server is

possible, although there are some severe limitations as the

number of clients and expected bandwidth grows.

In section III, we focused on binding addresses to our server,

and the time required to execute that task as the number

of addresses grew. Based on our current implementation, we

found a hard limit of 60000 addresses, thus giving us a very

clear maximum number of clients that we will be able to

support with individual addresses on the server for each client.

As discussed in the future work section, we plan to explore

alternative methods to bind these addresses to the interface in

order to improve the efficiency of our implementation with the

ultimate goal of raising that hard limit.

Additionally, in section IV, we discussed the response time

of the server given a fixed number of bound addresses. In

our current implementation, it would appear that we would be

best served by limiting the number of clients that we support

to under 15000-20000. Should we set that as a limitation, we

have the freedom to ignore bandwidth limits. If we are willing

to implement bandwidth limits to our clients or if we are

dealing with a network service that requires only occasional

data transmissions, we may be able to increase the number

of clients that we support. We plan to push this work forward

through exploring different methods to pass data from the NIC

to the server and back to the NIC again with the ultimate goal

of increasing efficiency to the point that bandwidth limits are

not a concern until we get to a significantly larger number of

clients.

REFERENCES

[1] R. Zhuang, S. Zhang, A. Bardas, S. A. DeLoach, X. Ou, and A. Singhal,
“Investigating the application of moving target defenses to network
security,” in 2013 6th International Symposium on Resilient Control
Systems (ISRCS), 2013, pp. 162–169.

[2] J. Yackoski, J. Li, S. A. DeLoach, and X. Ou, “Mission-oriented
moving target defense based on cryptographically strong network
dynamics,” in Proceedings of the Eighth Annual Cyber Security and
Information Intelligence Research Workshop, ser. CSIIRW ’13. New
York, NY, USA: ACM, 2013, pp. 57:1–57:4. [Online]. Available:
http://doi.acm.org/10.1145/2459976.2460040

[3] M. Dunlop, S. Groat, W. Urbanski, R. Marchany, and J. Tront, “MT6D:
a moving target IPv6 defense,” in MILITARY COMMUNICATIONS
CONFERENCE, 2011-MILCOM 2011, 2011, pp. 1321–1326. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6127486

[4] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification,” RFC 2460 (Draft Standard), Internet Engineering Task
Force, Dec. 1998, updated by RFCs 5095, 5722, 5871, 6437, 6564,
6935, 6946. [Online]. Available: http://www.ietf.org/rfc/rfc2460.txt

[5] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear,
“Address Allocation for Private Internets,” RFC 1918 (Best Current
Practice), Internet Engineering Task Force, Feb. 1996, updated by RFC
6761. [Online]. Available: http://www.ietf.org/rfc/rfc1918.txt

[6] S. Thomson and T. Narten, “IPv6 Stateless Address Autoconfiguration,”
RFC 2462 (Draft Standard), Internet Engineering Task Force,
Dec. 1998, obsoleted by RFC 4862. [Online]. Available: http:
//www.ietf.org/rfc/rfc2462.txt

[7] S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address
Autoconfiguration,” RFC 4862 (Draft Standard), Internet Engineering
Task Force, Sep. 2007. [Online]. Available: http://www.ietf.org/rfc/
rfc4862.txt

[8] ifconfig - linux man page. [Online]. Available: http://man7.org/linux/
man-pages/man8/ifconfig.8.html Access Date: 15 Sept 2014.

[9] ioctl - linux man page. [Online]. Available: http://man7.org/linux/man-
pages/man2/ioctl.2.html Access Date: 15 Sept 2014.

[10] netlink - linux man page. [Online]. Available: http://man7.org/linux/
man-pages/man7/netlink.7.html Access Date: 15 Sept 2014.

[11] socket - linux man page. [Online]. Available: http://man7.org/linux/man-
pages/man2/socket.2.html Access Date: 15 Sept 2014.

[12] J. Chase, A. Gallatin, and K. Yocum, “End system optimizations for
high-speed tcp,” Communications Magazine, IEEE, vol. 39, no. 4, pp.
68–74, Apr 2001.

[13] J. Nielsen, Usability engineering. Elsevier, 1994.

[14] Debian wheezy homepage. [Online]. Available: https://www.debian.org/
ports/amd64/ Access Date: 15 Sept 2014.

[15] mq overview - linux man page. [Online]. Available: http://man7.org/
linux/man-pages/man7/mq overview.7.html Access Date: 15 Sept 2014.

[16] Scapy. [Online]. Available: http://www.secdev.org/projects/scapy/
Access Date: 15 Sept 2014.

[17] Libtins packet crafting and sniffing library. [Online]. Available:
http://libtins.github.io/ Access Date: 15 Sept 2014.

[18] J. Song and J. Alves-Foss, “Performance review of zero copy tech-
niques,” International Journal of Computer Science and Security
(IJCSS), vol. 6, no. 4, p. 256, 2012.

[19] Pf ring. [Online]. Available: http://www.ntop.org/products/pf ring/pf
ring-zc-zero-copy/ Access Date: 15 Sept 2014.

The 9th International Conference for Internet Technology and Secured Transactions (ICITST-2014)

978-1-908320-39/1/$25.00©2014 IEEE 445

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 19:05:22 UTC from IEEE Xplore. Restrictions apply.

