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Abstract—Moving target defense is an area of network security 
research in which machines are moved logically around a network 
in order to avoid detection. This is done by leveraging the 

immense size of the IPv6 address space and the statistical 
improbability of two machines selecting the same IPv6 address. 
This defensive technique forces a malicious actor to focus on the 

reconnaissance phase of their attack rather than focusing only on 
finding holes in a machine’s static defenses. We have a current 
implementation of an IPv6 moving target defense entitled MT6D, 

which works well although is limited to functioning in a peer to 
peer scenario. As we push our research forward into client server 
networks, we must discover what the limits are in reference to 

the client server ratio. In our current implementation of a simple 
UDP echo server that binds large numbers of IPv6 addresses to 
the ethernet interface, we discover limits in both the number of 

addresses that we can successfully bind to an interface and the 
speed at which UDP requests can be successfully handled across 
a large number of bound interfaces. 

Keywords—Moving Target Defense; IPv6; Sockets; Network- 

ing. 

I. INTRODUCTION 

Improving security by hiding targets within a network is an 

active area of network security research. This effort occurs in 

conjunction with the current use of traditional security method- 

ologies where network and network resources are treated like 

castles with layered defenses built up around them. A common 

method to achieve this machine hiding involves leveraging 

the immense space available within IPv6 in order to move 

a machine logically around a subnet by reassigning layer 3 

addresses at a frequent interval. By coordinating this change 

in either a scheduled manner, or permitting hosts to calculate 

addresses for both themselves and their peer, we can ensure 

that two communicating machines can always find each other 

in the network. This methodology is often referred to as a 

moving target defense. There is a fairly small community of 

researchers working on this problem, including Zhuang et al 

in [1] and Yackoski et al in [2]. While much of the work 

that has been done to this point focus on the theories around 

a moving target defense, researchers at Virginia Tech have 

designed, implemented, and published a moving target defense 

algorithm entitled Moving Target IPv6 Defense or MT6D [3]. 

In its original design and implementation, MT6D was fo- 

cused solely on peer to peer networks, while generally leaving 

the  much  more  common  client  server  networks  untreated. 

Our  intent  in  this  paper  is  to  take  the  first  steps  toward 

pushing MT6D in the direction of providing client server 

network support. In an ideal situation, each client would have a 

distinct address on the server that it would communicate with. 

Alternatively, a server could maintain a single set of hopping 

addresses, and every client would use the same address. The 

former provides better privacy with a higher cost of resources, 

while the latter is simpler but reduces the privacy provided by 

the algorithm. 

This paper focuses on the first step of identifying and 

quantifying the scaling problems that will occur when we 

bind a large number of addresses to a host and permit a large 

number of clients to communicate with the server on those 

addresses. Ultimately, we must understand how many clients 

we can actually support with a single MT6D server. To this 

end, we must determine how many IPv6 addresses can be 

supported in the modern Linux kernel and how quickly a server 

can respond to client requests when it is bound to some large 

number of addresses. 

We explore those two limits by implementing a simple UDP 

echo server that binds some number of addresses and listens 

for requests on all of them. Upon receipt of the request, the 

server should respond with some data. In this paper, we will 

give a brief treatment of IPv6 and MT6D so that the reader 

has the requisite understanding of both protocols to further 

understand this research area. We will follow by explaining our 

motivation for conducting experiments in the manner that we 

did. We will discuss the limits that we reached on binding IPv6 

addresses in our implementation, followed by a discussion 

of the ideal parameters for our echo server. Finally, we will 

discuss our next research steps in the future work section 

before we conclude. 

II. BACKGROUND

A. IPv6 Overview 

Internet Protocol version 6 (IPv6) is the 128-bit replace- 

ment to the aging 32-bit IPv4 standard. IPv6 was originally 

published as part of RFC 2460 [4] in December of 1998, 

when it was realized that IPv4 would not be able to support 

the number of IP addresses that would be required as the 

Internet continued to grow. The biggest benefit provided by 

the move to IPv6 is the immense growth in the number of 

addresses available as we move from 32 bits to 128 bits. As 

a simple demonstration of the vast quantity of addresses in 

IPv6, there are sufficient addresses that one could assign more 
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that 667,000 addresses per square nanometer on the surface 

of Earth, including the oceans. To truly bring this number to 

scale, realize that the area of the tip of an average human 

hair is approximately 2 billion square nanometers. For direct 

comparison, we should see how this compares to the IPv4 

addressing scheme that uses only 32 bits. Instead of addressing 

nanometers as with IPv6, we will address kilometers of the 

surface of the Earth. In IPv4, each square kilometer on the 

surface of the planet gets only 8 addresses. We use this extreme 

difference in size to try to communicate an understanding of 

the immense space gained by simply adding 96 bits to our IP 

addresses. 

In IPv6, the address is generally split into three pieces, 

representing different parts or layers of the network. The first 

48 bits are used to represent the routing prefix, the next 16 

bits represent the subnet identification, and the last 64 bits, 

also known as the interface identifier (IID), represent the host. 
This means that on any subnet, there are approximately 264

or 1.845x1019 distinct IIDs available. In stark contrast, there

are only a total of 232 or 4 billion addresses available in the

entirety of the IPv4 address space. Due to the limited address 

space in IPv4, assigning addresses requires a great deal of 

planning and close control from network administrators in 

order to ensure efficient usage. In fact, the IPv4 addressed 

internet relies in large part to RFC 1918 [5] private addresses 

in order to function. These private addresses permit a large 

number of addresses to masquerade as a single address. In 

contrast, it is completely feasible to permit a client to select 

their own IID in IPv6, since the probability of a collision 

is almost zero. In fact, according to the birthday paradox, it 

would take approximately 264/2 or just over 4 billion attempts

to have a greater than 50% likelihood of a collision inside of 

a 64 bit IPv6 subnet. This fact permits the majority of IPv6 

networks to rely on IPv6 Stateless Address Autoconfiguration 

(SLAAC) in order to assign addresses to their clients. 

SLAAC is an automatic addressing scheme that was for- 

malized in RFC 2462 [6] and updated in RFC 4862 [7] that 

provides a machine with the ability to generate its own an 

IPv6 address. In SLAAC, clients ask their local router for the 

routing prefix and subnet id portions of the address by sending 

a router solicitation message to the nearest router. The router 

responds with a router advertisement message which gives 

the client the first half of their IPv6 address. The host then 

generates its own IID and appends it to the prefix and subnet id 

that were received from the router, and assigns the address to 

its network interface. IID generation algorithms vary, but are 

usually based on the network interface card’s Media Access 

Control (MAC) address. Since a machine will likely use the 

same method each time it generates an IID, it is probable that 

the IID will be the same for a given machine. 

B. Moving Target IPv6 Defense 

Moving Target IPv6 Defense (MT6D) was introduced as 

a specific solution to the moving  target  defense  problem, 

and was originally proposed by Dunlop, et al. in  a  2011 

paper  entitled  MT6D:  A  Moving  Target  IPv6  Defense  [3]. 

MT6D leverages the enormity  of  the  IPv6  address  space 

by allowing multiple hosts to assign themselves new IPv6 

addresses at arbitrary but pre-determined time intervals, while 

they maintain the ability to communicate with each other. As 

with SLAAC, the large number of addresses available within 

the IPv6 address space gives an almost zero probability of an 

address collision occurring. 

The addresses used for reassignment are created through 

the MT6D algorithm, which uses the machine’s SLAAC 

generated or statically assigned IPv6 Interface Identifier (IID), 

a passphrase, and the current time. Configuration is required 

so that the machines have a pre-shared copy of the seed IID 

and the passphrase. The algorithm also requires a relatively 

close time synchronization, usually within several seconds. 

Machines are also provided with the seed IID, IPv6 prefix, and 

subnet ID of the host that they will be communicating with 

via an MT6D connection. With all of the address generation 

information available to both hosts, machines are able to 

calculate not only their own MT6D addresses, but also the 

MT6D addresses of their peer. By defaults, hosts generate 

and assign new addresses every 10 seconds. Additionally, each 

host keeps its previous, current, and next address assigned to 

its interface in order to prevent packet loss due to latency 

in the network. MT6D relies on UDP for transport, and 

simply encapsulates an entire IPv6 packet inside of an MT6D 

generated UDP datagram and MT6D generated IPv6 packet. 

The authors have engineered MT6D in such a way that they 

can keep TCP sessions active, even during MT6D address 

rotations. 

This ability for a machine to logically move throughout 

the  network  at  will  forces  a  shift  in  the  way  an  attacker 

does business. Rather than following the traditional phases 

of reconnaissance and exploit, MT6D forces an adversary to 

commit all of their resources to the reconnaissance phase. 

Additionally, MT6D does not preclude someone from applying 

standard security defenses to a machine, rather adds a layer 

of anonymity on the network on top of the standard security. 

MT6D was originally designed, and has only been imple- 

mented up to this point to function as a peer to peer service. 

While it is theoretically possible to stretch MT6D to support 

several more machines, it was never designed with a client 

server network in mind. While peer to peer networks are an 

extremely powerful and useful section of the Internet, a great 

deal of data is exchanged between clients and servers. For 

example, each time you browse a webpage, upload a file to 

cloud based storage, or send an email, your machine is a client, 

interacting directly with a server. It is with this in mind, that 

we are working towards extending MT6D to support client 

server networks. 

C. Methodology 

The first step in designing and building an MT6D server, is 

to understand what is possible given the capabilities provided 

in the modern Linux kernel using standard commodity hard- 

ware. We must first determine the number of addresses that a 

machine can bind to its network interface. This will help us 
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to determine how many clients we can support with a single 

server. Additionally, we must determine how quickly we can 

send data to the server considering the number of addresses 

that it has currently bound. This will help us to determine the 

maximum possible rate of data as the number of active clients 

changes. 

A number of different methods can be used to bind and 

unbind addresses within Linux. The simplest is to call ifconfig 

[8] from within your server, and allow the utility to handle 

the address  binding and  unbinding  for  you.  However,  this 

is extremely inefficient. Each time ifconfig is called, a new 

process must be spun up in order to handle the request. 

Alternatively, the server can send Input Output Control (ioctl) 

[9] or netlink [10] messages to the kernel. For our experiments, 

we chose to use netlink messages due to their ease of use and 

speed. 

As there are a number of methods for binding and unbinding 

addresses, there are also a number of methods that can be used 

to listen for, receive, process, and respond to client requests 

on a server. One of the easiest and most common methods is 

to use standard BSD sockets [11]. Sockets are well supported, 

but require a reliance on the Linux kernel to process packets 

from the  hardware up  to the  layer  at which  the socket  is 

listening before being handed over to the server. Rather than 

using sockets, it is possible to use zero copy networking [12], 

where a server is permitted to reach past the kernel all the 

way to the device driver, reducing the reliance on the kernel’s 

processing, reducing the need for multiple context switches, 

and reducing the number of copies that are required when a 

packet is moved from the hardware to the server. While zero 

copy networking is more efficient than standard sockets, we 

decided to use sockets for these experiments, leaving zero copy 

networking for future work. 

D. Network Service Performance Metrics 

A number of network services may find some benefit in be- 

ing obscured with a moving target defense connection. If I am 

surreptitiously attempting to share data with someone, it would 

be beneficial to have my location on the network obscured. I 

could even use Voice over IP (VoIP) services and wish to 

have the location of my phone obscured within the network. 

While both of these examples could potentially benefit from 

implementation of a moving target defense, the metrics used 

to define the usability of each are significantly different. If I 

am uploading a file or downloading a webpage, some delay in 

the connection with my server may be acceptable, while delay 

in connection when dealing with a real time service such as 

VoIP must be much less. 

In his book Usability Engineering [13], Jakob Nielsen 

discusses acceptable response times in order to give a user 

different feelings about the content that they are interacting 

with. According to Nielsen, responses received within a 0.1 

second window make the user feel as though the system reacts 

instantaneously. The author states that a 1 second response 

time is the generally accepted upper bound for the system to 

not interfere with a user’s flow of thought, although they will 

notice that there is some delay in the system. We take these 

ideas and rough numbers as inspiration and desire to keep 

our server response time as close to the 0.1 second mark as 

possible. In future sections, we will see how this will help us 

to dictate how many addresses and thus how many clients we 

are able to support on our server. 

In the next two sections, we will discuss in more depth the 

implementation of our server and the results of the experiments 

that were run in support of our understanding the limits of 

building a server that listens on numerous IPv6 addresses at 

the same time. 

III. TIME TO BIND ADDRESSES

How many IPv6 addresses can be bound to a single machine 

at any give time, while still permitting the machine to function 

on the network? Identifying this limit will give us an upper 

bound of the number of clients that our MT6D server will 

realistically be able  to  support  at  a  single  time.  In  order 

to discover this limit, we built a simple program in C that 

generates a list of IPv6 addresses, binds those addresses to 

the machine’s eth0 interface, and once complete, unbinds those 

addresses from the eth0 interface. 

We used a Dell OptiPlex 9020 running 64-bit Debian 

Wheezy [14]. The machine has an Intel i7-4770 processor run- 

ning at 3.4Ghz, 16GB of RAM and an Intel I217-LM Gigabit 

Ethernet network interface card. The experiment consists of 

a program written in C that uses the rtnetlink [10] library in 

order to send messages the the kernel for IP Address binding 

and unbinding. The program begins by generating a list of n 

IPv6 addresses, where n varies from 1 to 70000 in increments 

of 5000. We continue sending netlink RTM NEWADDR (bind) 

messages for each address as quickly as possible. Once all 

addresses were successfully bound, we send RTM DELADDR 

(unbind) messages as quickly as possible. Address generation, 

binding, and unbinding were timed individually, and each mea- 

surement was averaged across the total number of addresses 

that were bound and unbound. Each set of parameters was run 

5 times and averaged, resulting in the data that is displayed in 

Fig. 1. 

We found that the average address generation time increased 

as addresses increased as expected, and our implementation 

had a maximum time of 2 milliseconds to generate 70000 

IPv6 addresses. Additionally, we found that the average time 

to generate an address did not increase, and was between 16 

and 48 nanoseconds regardless of the number of addresses that 

we generated. 

We found that there was a roughly linear increase in time as 

we increased the number of addresses to bind up to the 55000 

address mark. Above 55000 addresses, we found an expo- 

nential increase in time for each address bound. The average 

time to bind addresses increases from 176 microseconds at 1 

address to 3.9 milliseconds at 50000 addresses. After 55000 

addresses, we quickly increase to 11 ms, 50 ms, and 101 ms, 

for 60000, 65000, and 70000 addresses respectively. The total 

time required to bind addresses shows a dramatic increase 
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Figure 1.  This chart shows the average time required to generate, bind, and 
unbind an IPv6 address based on the given number of addresses. 

from 216 seconds for 55000 addresses to 7108 seconds for 

70000 addresses. 

While time to bind has a dramatic increase above 50000 

addresses, time to unbind continues to follow a linear time 

increase all the way up to 70000 addresses. At its slowest, 

the average time to unbind an address was approximately 5 

milliseconds. 

We also ran some basic computer and network functionality 

tests after addresses were bound in order to discover whether 

our limitation was the actual  binding  of  the  addresses,  or 

the memory required to keep the addresses  bound.  Even 

with 70000 addresses bound to our machine, we did not see 

a noticeable slowdown in the performance of our machine 

through both basic computing and performing a large file 

download from the internet. 

Experimental results lead us to to the determination that our 

current implementation has an upper bound of approximately 

55000 actively bound IPv6 addresses. It is possible to bind 

more than 55000 addresses, although the time required per 

address becomes longer than our desired address rotation 

period as described in the MT6D section. This upper bound 

has also helped us to determine our limit when conducting our 

next set of experiments, which focus on tuning our server for 

best performance. 

IV. SERVER RESPONSE TIME

Previous experiments have provided us with a clear un- 

derstanding of what the limits of our implementation are in 

regards to the maximum number of addresses that we can 

manage. We must now determine what the maximum rate of 

data receipt is for the server. In order to determine these values, 

we built a UDP echo server that listens on all bound IPv6 

addresses on UDP port 3540. When a request is received, 

the server responds with the requested data which has been 

calculated at ten times the size of the request. This increase 

in size of the response is intended to replicate the standard 

request/response size ratio that is inherent in most web based 

services. In our implementation, we use standard BSD sockets 

[11] with AF INET6 and SOCK DGRAM. 

Once addresses are bound, we spawn a listener thread and 

a worker  thread.  The  listener  thread  simply  receives  UDP 

requests and queues them in a POSIX message queue [15] 

as quickly as they are received. The worker thread looks for 

messages in the queue, and upon receipt of a message, sends 

the data back to the requesting client ten times. As return 

packets are built, we ensure that the source address is the 

actual address where packet was received, rather than allowing 

the kernel to address the packet for us. We discovered that by 

default, the kernel that we were using would use the highest 

IPv6 address as the source if not modified otherwise. Since 

the worker is  sending  ten  times  the  data  that  the  listener 

is receiving, it is apparent that the worker thread is the 

slowest part of the server. Earlier implementations of the 

server attempted to leverage multithreading, but we found that 

contention on the call to BSD sockets sendmsg() resulted in 

much poorer performance. 

A production implementation of our server would be con- 

currently communicating with n clients, where n is some 

number up to 55000. Rather than  dealing  with  the  issues 

that come with managing a group of clients at that scale, we 

chose to use some simple traffic generation tools in order to 

replicate the real world. We began by building a client traffic 

generator around the Python packet generation tool, Scapy 

[16], but found that the Python interpreter did not generate 

traffic quickly enough to put any stress on the server. We 

attribute this primarily to the limitation of using the Python 

interpreter, rather than using compiled code. Through further 

research, we discovered a C++ library that provides the ease of 

use of Scapy with the efficiency of compiled C++ code entitled 

libtins [17]. When our client was permitted to send traffic 

without delay, we were able to achieve a rate of approximately 

150,000 packets per second (pps). We used a simple sleep 

timer within the client to allow us to control our rate of 

transmission in the range of 1900 to 150000 pps. 

In all of our experiments, we had the server bind n addresses 

and create a UDP socket in order to listen on all addresses 

before the client was allowed to proceed. Once the server 

was finished and idly listening, the client would send 250,000 

UDP requests to the server at the dictated packets per second 

interval. Destination IP addresses were selected at random 

from the pool of addresses that the server had bound. We 

counted receipt of fewer than 90% of those 250,000 requests 

to be a failure, and discounted those experiment parameters 

from the data collection. For this set of experiments, we varied 

packets per second in the range of 1900 to 150000 pps and 

the number of addresses in the range from 1 address to 55000 

addresses in increments of 5000 addresses. The range of packet 
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Figure 2. This chart shows the rate of data transmission in packets per 
second against the number of addresses bound on the server resulting in the 
ideal values based on the necessary server response time. The Y axis data is 
represented using a logarithmic scale. 

results that we can analyze all the way to 55000 addresses. 

Unfortunately, we can see that we have a maximum possible 

data rate of 2000 packets per second when we are bound to 

55000 addresses. This means that on average, our server would 

only be able to support 55000 clients if their individual data 

rates averaged one packet every 27 seconds. This is of course 

fully unacceptable in almost every situation where client server 

interaction is required. 

We can see though that performance increases as the number 

of addresses decreases, reaching a maximum supportable data 

rate of 150000 packets per second when 10000 or fewer 

addresses are bound to the server. We find in counter to the 

extreme case of 55000 addresses that a situation where 10000 

addresses are bound, our clients can sustain an average data 

rate of approximately 150 packets per second. This of course 

is still not ideal, but does give us a base line from which to 

build. 

By comparing our results with the desired results described 

in section II.D., we see that we must limit our server to 

approximately 10000-15000 addresses bound. While this is a 

great step forward in building a moving target defense client 

server network, it is still a severe limitation that we would like 

to remove. In the next section, we will discuss in some detail 

the next steps we plan to take in order to remove or reduce 

these limitations. 

speed does not fall on clean numbers due to the fact that 

we were varying sleep time on the server, which indirectly 

impacted our packets per second rather than dictating a specific 

packet per second number. Experiments were run on each set 

of parameters five times and results were averaged. 

In Fig. 2 we can see the results of the described experiments. 

On the X axis, we see the range of addresses bound to the 

ethernet interface from 1 to 55000, while the Y axis gives 

us the range of packets per second from 1900 on the bottom 

to 150000 at the top. The data follows a nearly logarithmic 

function, so the Y axis is presented in a logarithmic scale 

with 200000 as the maximum value on the axis and 1000 

as the minimum. The four lines represent the combination of 

pps and address number that resulted in a particular average 

response time. As the legend demonstrates, red represents an 

average response time of less than 1 ms, blue represents an 

average response time of less than 5ms, green represents an 

average response time of less than 50ms and purple represents 

an average response time of less than 100ms. 

We show the results with differing average response times 

due to the fact that different services require a different 

response time from a server. For example, real time services 

have much lower tolerance for delay from the server, while 

other non-realtime services such as e-mail are more tolerant 

of delays from the server. 

In Fig. 2, we can see that we did not have any tests with 

more than 30000 addresses that were able to respond in less 

than 1 millisecond, no matter the rate of requests. Once we 

consider a 5 millisecond response time as acceptable, we have 

V. FUTURE WORK 

Two primary factors limit the performance of our server. 

These factors are the time required to bind an address and 

the time required to receive, process, and reply to a UDP 

request. We realize that we may not be using the most efficient 

techniques in order to execute these tasks, so we plan to 

continue research in these areas to discover, implement, and 

test alternative methods that may improve the performance of 

our server. 

As discussed in section II.C., there are several methods that 

can be used to bind IP addresses to an interface. We only 

analyzed two, focusing on either using ifconfig or sending 

netlink messages. As reported, we found that there was a great 

performance increase by moving from the former to the latter, 

but we plan to explore ioctl in more depth. We will conduct a 

direct comparison between using netlink messages and ioctl in 

order to more clearly determine which is the preferred method 

in regards to performance. Additionally, there is the possibility 

that we could bypass the utilities that are provided by the 

operating system and reach directly into the data structures that 

hold IP addresses and manipulate them manually. Of course, 

there is the potential for great risk in using this method, and 

more research is required to determine if it is feasible. We 

must determine what the risks are and if those risks provide 

us with some performance improvement over the methods that 

we are currently using. 

Also in section II.C., we used standard BSD sockets with 

SOCK DGRAM UDP sockets to send and receive data be- 

tween the machines on our network. We know that this is not 

the most efficient means of passing data onto a network, but 
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it is the easiest and most well supported. We plan to identify 

and explore several other methods that can be used to send and 

receive data and compare them with UDP sockets to identify 

the method that gives us the best performance possible. 

In particular, we will explore the use of raw sockets[11], 

zero copy networking[12], [18], and the PF Ring framework 

[19] in order to improve server efficiency. Raw sockets will 

allow us to build our network datagram manually, rather than 

relying on the Linux kernel. It is possible  that  we  could 

build our IPv6  and Ethernet  headers more  efficiently than 

the kernel does, thus resulting in faster data processing. Zero 

copy networking is a method in which the ring buffer that 

is normally used by the kernel’s network stack for send and 

receive queues is moved from kernel space into user space. 

This simple technique eliminates the need for the server to 

copy data from kernel space to user space on receipt or to copy 

data from user space to kernel space on send. This technique 

can also be implemented in such a way that system calls are 

nearly eliminated, thus resulting in far fewer time consuming 

context switches. The final method that we plan to explore is 

PF Ring, which is really a framework that exploits the power 

zero copy networking. PF Ring implements most of the low 

level code required to make zero copy networking function, 

thus abstracting much of the problem away from the server 

implementer. 

VI. CONCLUSION

We have shown the limitations in building a server that must 

bind to and listen on many IPv6 addresses. This particular 

problem is something that is exceedingly unique in the world 

of IPv6 and moving target defense. We believe that we have 

shown that building an IPv6 moving target defense server is 

possible, although there are some severe limitations as the 

number of clients and expected bandwidth grows. 

In section III, we focused on binding addresses to our server, 

and the time  required  to  execute  that  task  as  the  number 

of addresses grew. Based on our current implementation, we 

found a hard limit of 60000 addresses, thus giving us a very 

clear maximum number of clients that we will be able to 

support with individual addresses on the server for each client. 

As discussed in the future work section, we plan to explore 

alternative methods to bind these addresses to the interface in 

order to improve the efficiency of our implementation with the 

ultimate goal of raising that hard limit. 

Additionally, in section IV, we discussed the response time 

of the server given a fixed number of bound addresses. In 

our current implementation, it would appear that we would be 

best served by limiting the number of clients that we support 

to under 15000-20000. Should we set that as a limitation, we 

have the freedom to ignore bandwidth limits. If we are willing 

to implement bandwidth limits to our clients or if we are 

dealing with a network service that requires only occasional 

data transmissions, we may be able to increase the number 

of clients that we support. We plan to push this work forward 

through exploring different methods to pass data from the NIC 

to the server and back to the NIC again with the ultimate goal 

of increasing efficiency to the point that bandwidth limits are 

not a concern until we get to a significantly larger number of 

clients. 
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