
Reflections on Operating in Hostile Environments

Anil Bazaz, James D. Arthur, Randolph Marchany

Virginia Tech

Blacksburg, VA 24061

{abazaz, arthur, marchany}@vt.edu

Abstract

 We introduce a generally applicable framework to

assess and substantiate the security of a software

component of a computer system. The framework
constitutes a meta-model. Security models can be

derived from it for components of a computer system.

The concept of trust is interwoven into the meta-model

and is an integral part of derived security models.

1. Introduction

A popular legend says that a computer system is

secure if is twenty feet below ground in a locked

basement without any connection to the outside world,

and even then we cannot be sure. The above statement

summarizes the difficulty in assessing and ensuring the

security of a computer system. Computers today are

being used for a wide variety of applications ranging

from personal use to managing critical infrastructure.

Moreover, the advent of the Internet has increased the

accessibility of computer systems dramatically. This

widespread use has made computers an enticing target

for attacks and their accessibility makes them an easy

target. Numerous attacks targeting computer systems

are evidence of the fact that they are both easy and

enticing targets. These attacks have caused damages

worth millions of dollars (e.g., the denial of service

attack on e-commerce websites in February, 2000) and

much suffering. In 2001 an Australian man hacked into

Maroochy Shire, Queensland waste management

system and spilled millions of liters of sewage into

parks and rivers. The computerized sewage system was

not connected to the Internet and was accessible only

through a modem. The man responsible w

as caught. It

turned out that he worked for the company which had

This research and presentation was supported in part by Virginia

Tech Department of Computer Science, Systems Research Center,

Digital Library Research Laboratory, and NSF Grant No. DUE-
0121679.

installed the computerized system [15]. This attack

underlines the importance of security for even private

networks. Any multi-user system, or a system

connected to the Internet, or any network for that

matter is susceptible to attacks. We can safely assume

that such a system is operating in a hostile

environment. As in any hostile environment protection

of the system from attacks is a prime concern. Attacks

can range from data disruption, denial of service, to an

attempt to own the system or even destruction of the

system. Attackers will employ a variety of tools and

techniques to attack the system. An attack to the

system can come from outside of the network or from

inside the network. Steps must be taken to ensure the

security of the system when operating in such an

environment.

 Assessing and ensuring the security of a

computer system is a very difficult task. In his paper

"Reflections on Trusting Trust" Ken Thompson

illustrates the difficulty of assessing security by

demonstrating how easy it is put a Trojan horse into

the source code, and how difficult it is to detect it [19].

 Several issues make assessing the security of a

computer system a very complicated task. The first

issue stems from the fact that modern computers are

very complex systems composed of highly complicated

and inter-dependent components. To assess the security

of a computer system we have to assess the security of

its components. Assessing the security of a component

involves not only assessing its security but also the

security of all the components whose services it

utilizes. This makes security analysis of a computer

system a very complicated task. The second issue is

recognizing the vulnerabilities of a computer system.

"Know your enemy and know you self; in a hundred

battles you will never be in peril ", said Sun Tzu in the

Art of War [18] and this holds true in the case of

computer security too. However, there are many

known vulnerabilities of a computer system e.g., buffer

validation errors, heap validation errors etc. It is not

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 1
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:30 UTC from IEEE Xplore. Restrictions apply.

practical to analyze an application for each known

vulnerability. We need to analyze the vulnerabilities to

identify the characteristics of the root causes of these

vulnerabilities. These characteristics point to sources of

the vulnerabilities. We refer to the sources of

vulnerabilities of the system as "Attack Surface"
1
 [9].

We also define the term "Attack Depth" as the extent of

damage caused if these vulnerabilities are successfully

exploited. The terms Attack Surface and Attack Depth
embody the potential threat to a system. The third issue

stems from the fact that a vulnerability can be

exploited in a number of ways. For example, buffer

validation errors can be exploited by buffer overflow

attack, off by one attack etc. An intelligent

categorization of known exploits is needed to identify

ways in which vulnerabilities can be exploited. The

fourth issue is how to derive effective strategies for

assessing security of a component of the computer

system? The information about the sources of

vulnerabilities and ways of exploitation has to be used

effectively to evolve verification and validation

strategies to assess security. The fifth issue is how do

we address the reality that new vulnerabilities and new

ways of exploiting vulnerabilities are being discovered

constantly? Thus any technique for analyzing security

of a computer system should be easily updateable.

These issues have made the detection of security errors

a very difficult, if not an impossible task.

 In this paper we introduce a framework for

assessing and substantiating security of a software

component of the computer system. The framework

consists of a meta-model from which models for

verifying and validating security can be derived for any

component of the computer system (operating system

kernel, system software, and application software). The

meta-model takes into consideration the concept of

trust while verifying and validating security of the

system.

 The meta-model is still evolving; the major

purpose of this paper is to present this idea to the

security community and to gain valuable feedback

from them. We also limit our discussion to software

components since the framework concentrates only on

the software components of the computer system.

1
The term “Attack Surface” has been used in Howard et al’s. book

“Writing Secure Code” with similar meaning.

1.1 Related Work

There has been a significant amount of research on

individual security threats. Tools have been developed

to safeguard against specific vulnerabilities. For

example, StackGuard is a tool for avoiding buffer

overflow problem [10]. Significant research effort has

also been put into building more secure operating

systems, e.g., REMUS (Reference Monitor for UNIX

Systems) [4]. Various attack taxonomies have also

been developed: Protection Analysis Taxonomy [5],

RIOS (Research In Secured Operating Systems) [1],

etc. A large amount of literature (in fact too much) is

available on individual security flaws and how to avoid

them. Nonetheless, research that takes an integral view

of the problem has been limited.

Considerable research has been done on process

based approaches for analyzing security. Amoroso et

al. describe the Trusted Software Methodology (TSM),

a system for defining and measuring software

trustworthiness [2]. Systems Security Engineering–

Capability Maturity Model (SSE-CMM) is another

process reference model for evaluating and improving

security engineering practices in a organization [17].

Although process based approaches are essential in

evaluating security, they are not a replacement for

product based evaluation approaches. For example, a

product developed by an organization having high

SSE-CMM level is not necessarily security defect free.

Thus, to evaluate the security of a computer system,

product based evaluation approaches have to be

identified.

Other approaches have also been developed for

evaluating security. For example, Common Criteria for

Information Technology Security Evaluation (CC) [8]

is the combined effort of North American and some

European governments to establish criteria for security

evaluation in the information technology domain. CC

is impaired by some basic disadvantages. Since CC

addresses a wide range of products, it is specified in

general terms and is subject to a variety of

interpretations while being applied to a specific

product. These interpretations determine the level of

security evaluation and can be imprecise. CC also

carries with it a significant bureaucratic baggage, and it

is doubtful that it will be able to evolve with increasing

threats [9]. Other similar approaches, e.g., TCSEC,

ITSEC, suffer from similar disadvantages.

Additionally, imposition of standards and criteria for

engineering of the software has not proven to be

decidedly effective to date. Pfleeger et al. [14], found

250 standards for the engineering of software, and

concluded that they were mostly ineffective. Another

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 2
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:30 UTC from IEEE Xplore. Restrictions apply.

approach for certifying the security of a system is

formal assurance methods. These methods have proven

however, to be of limited use [16].

Our research differs from the earlier research in a

number of ways:

1. The framework presents a comprehensive

solution for the assessing security. It can be

applied to any software component of a

computer system, provided a proper model for

that component is determined.

2. The framework introduces a product based

approach for assessing the security of a

computer system. It can be used for

evaluating security even if no development

documentation is available.

3. The concept of trust is interwoven into the

framework.

4. The design of the framework is modular. The

individual components of the framework can

be easily updated or replaced as need arises.

5. We also intend to keep framework as simple

as possible so that professionals will actually

use it.

2. The Framework

In this paper we introduce a framework for deriving

verification and validation strategies that supports a

multi-level approach towards assessing and

substantiating the security of a component of a

computer system. The framework allows analysis of

the component at any point during or after completion

of its development lifecycle. The framework is

comprised of two components: the trust levels and the

meta-model. The trust levels categorize the

components of the computer system into groups and

organize them in a layered structure. These layers

constrain the view of the computer system, thereby

limiting the scope of security analysis and making it a

manageable task. The meta-model is a system for

assessing the security of a computer system

component. Operational models can be derived from

the meta-model for a trust level and applied to an

application
1
 operating at that trust level. For example,

we can derive an operational model from the meta-

model for application software. It is obvious that the

operational models will be different for different trust

levels. We are currently investigating how these

models differ and/or overlap with trust levels.

1
Note: In this paper application is used as a general term for any

component of computer system. For example, operating system

kernel is an application at trust level 1, hardware is an application at
trust level 0.

Applications executing at any of the trust levels are

complex and can be subdivided into many smaller

components. Security assessment involves breaking an

application down into its components and analyzing

the components by using the meta-model. Analysis

must also be carried out for the application as a whole.

We conjecture that this approach will catch most, if not

all security errors arising from the integration of

components.

2.1 The Trust Levels

The trust levels categorize the constituent

components of the computer system into four groups:

(1) hardware, (2) operating system kernel, (3) system

applications, and (4) user applications. Any computer

system is composed of one or more of the above

components. Hardware comprises of hardware

components of system, e.g. the CPU, hard disk,

memory, etc. The Operating system kernel is the core

operating system program running on the hardware.

System applications are applications providing

operating system services to users and user

applications, e.g., password program, authentication

services etc. User applications are applications which

users build and employ, e.g., Microsoft Word,

Multimedia programs etc. Security of the system

cannot be guaranteed until each of these components is

secure.

These categories of components are organized in a

layered structure. We define the layers as "trust levels"

with hardware at trust level 0, the operating system

kernel at trust level 1, the system software at trust level

Figure 2.1 Trust Levels

Hardware
Trust Level 0

Operating
System Kernel
Trust Level 1

System
Software
Trust Level 2

Application
Software
Trust Level 3

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 3
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:30 UTC from IEEE Xplore. Restrictions apply.

2, and the application software at trust level 3. For a

system component to be secure all trust levels below it

must be secure. So before verifying and validating the

security at any trust level we must assume the security

at all the trust levels below it. Thus, trust level 1

depends on trust level 0, trust level 2 depends on trust

levels 0 and 1, and trust level 3 depends on trust levels

0, 1 and 2.

Figure 2.1 illustrates trust levels of a computer

system. The surfaces of the triangle (except the base)

can be viewed as the attack surface. This surface is

what is seen by an attacker, who can attack at any trust

level of the system. Attack surface is thus equivalent to

sum of attack surfaces at trust level 3, 2, 1 and 0.

Our approach to assessing security assumes initially

that we can limit the attack surface. For example,

assessing the security of a component at trust level 3

assumes impregnability of trust level's 2, 1 and 0. This

makes security assessment of a system more

manageable. We can develop our model and methods

for that trust level accordingly.

2.2 The Meta-Model

The meta-model is used to assess and substantiate

the security of a component of the computer system. It

is composed of three components: (1) the threat model,

(2) the taxonomy of attacks, and (3) Verification and

Validation (V&V) strategies. The threat model is a

compilation of the common characteristics of the root

causes of vulnerabilities. It enables us to identify the

sources of vulnerabilities that may be present in a

software component and its damage potential. The

taxonomy of attacks is an intelligent grouping of

exploits based on the root causes of vulnerabilities. It

identifies ways in which the sources of vulnerabilities,

identified by the threat model, can be exploited. V&V

strategies provide us with methods for analyzing the

security of the software component. The sources of

security defects (threat model) serve as targets for

V&V strategies and the taxonomy provides us with

ways of exploiting these sources. Together, the threat

model and the taxonomy enable us to evolve V&V

strategies for assessing and substantiating the security

of a software component of the computer system.

Figure 2.3 illustrates the framework for assessing

and substantiating the security of a component of the

computer system. The succeeding subsections describe

the components of the meta-model in detail.

2.2.1. Threat Model

The first component of the meta-model is the threat

model. The threat model is a representation of the

common characteristics of the root causes of security

defects. These characteristics enable us to identify the

sources of vulnerabilities in an application, thus

establishing its attack surface. The threat model also

provides an assessment of the damage (attack depth) if

an attack is successfully accomplished. The threat

model consists of three components:

1. The Interface

2. Temporary components

3. Privilege levels

An application receives input, produces output, and

interacts with the environment through its interface and

temporary components. Most of the applications at any

trust level are attacked through manipulation of these

three threat model components; these are the points at

which an application is most vulnerable. For example,

some applications operating with dynamic privileges

are attacked during raising or lowering of privilege

levels. Thus, Interface, temporary components, and

Apply trust levels to
Meta-Model

Hardware Kernel System S/W Application
S/W

Trust levels

Model

Meta-
model

Taxonomy
of threats

Verification
and

validation
strategies

Threat
model

Derive model from
meta-model

Figure 2.3 Relationship between meta-
model and trust levels

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 4
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:30 UTC from IEEE Xplore. Restrictions apply.

privilege levels provide us with the sources of

vulnerabilities in an application, and are collectively

referred to as Attack Surface. Additionally, privilege

levels convey an idea of resources that can be accessed

by the application, thus giving us an insight into the

damage potential of the application. The privilege

levels, therefore, gives us the Attack Depth of an

application. Collectively Interface, Privilege level and

Temporary components characterize the potential

threat to the application.

The first component, the interface, is defined as the

part of application that accepts input. Through the

interface an application accepts input from its

environment. It can be local if input is accepted only

from local user, it can be system wide if input is

accepted from multiple users in a multi-user

environment, or it can be global if input is accepted

from the network or Internet.

The second component of the threat model is the

temporary components. This includes temporary files,

sockets, named pipes, RPC, registry variables,

environment variables, etc., that are used by the

application. The difference between the temporary

components and the interface is that the temporary

components are not used directly for input but are used

during the course of computing. All of the above

temporary components can be exploited in an attack on

an application, and thus are sources of vulnerabilities.

The third component, privilege levels, determine

the access an application process has to system

resources. A process can run at user privilege, special

privilege, administrator privilege, and can even have

dynamic privileges. All of the above privilege levels

are defined below:

1. User Privilege: An application process has user

privilege level, if it has limited access to system

resources and the impact of successful attack on

the application will be limited to the user only.

Different users in a system can have different

resource accesses, but this has been ignored in

our analysis. The reason is that even with

different privileges the impact of a successful

attack on a process being run at user privilege

will be limited to the user.

2. Special Privilege: If the application process has

access to resources which, if compromised, can

have system wide impact, then the privilege

level is classified as special privilege.

3. Administrative Privilege: An application

process can also have administrator-level

privileges. At this privilege level access to all

the system resources is possible. A successful

attack on an application with this privilege level

can be devastating and can lead to the complete

destruction of the system.

4. Dynamic Privilege: An application process can

have dynamic privilege levels, that is, the

privilege levels can change while the process is

running. For example, setuid programs in Unix

and its variants, exhibit dynamic privileges.

When considered together these three components

(interface, temporary components and privilege levels)

enable us to characterize the sources of vulnerabilities

of an application and to estimate the extent of damage,

if a successful attack is achieved on the application.

2.2.2. Taxonomy of Attacks

The second component of the meta-model is the

taxonomy of attacks. The taxonomy categorizes the

ways in which an application can be attacked. The

taxonomy should be detailed enough to cover all the

ways in which an application can be attacked. However

it should not be a simple listing of attacks, but an

intelligent grouping that captures the root causes of

computer security errors. Furthermore, the

categorization should map to the sources of

vulnerabilities identified in threat model. An

understanding of the relationship between the two

enables us to evolve verification and validation

strategies for assessing and substantiating the security

of an application.

 VERDICT, a taxonomy build by Daniel Lough

[12] is currently being used as our taxonomy of attacks

for this meta-model. VERDICT is an acronym for

Validation Exposure Randomness Deallocation

Improper Conditions Taxonomy. VERDICT goes

beyond simple listing of attacks, and classifies attacks

based on root causes of security problems. Taxonomies

like the taxonomy of security faults developed at the

COAST laboratory [3] can also be used as taxonomy of

attacks.

VERDICT classifies all security errors into four

categories. They are:

1. Validation: A security error is classified as a

validation error if the error is caused by a

violation of limits imposed by the system.

Validation errors are a significant cause of

security errors.

2. Exposure: A security error is classified as an

exposure error if it reveals information that can

be used directly or indirectly for exploitation of

a vulnerability. An exposure error is not usually

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 5
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:30 UTC from IEEE Xplore. Restrictions apply.

a direct security error, but can be used in a

multi-step attack on a system.

3. Randomness: A security error is classified as a

randomness error if the error results from

improper use of random sources for maintaining

secret information.

4. Deallocation: A security error is classified as a

deallocation error if a compromise stems from

residual information left by the process.

For example, a Buffer Overflow exploit is caused

by improper (or lack of) bounds checking that results

in overwriting of the program stack. A carefully crafted

input can be used to transfer the control of program to

anywhere the attacker wants. VERDICT classifies

Buffer Overflow exploit as a validation error. This is

because the root cause of buffer overflow exploit is

improper or lack of bound checking. Thus, VERDICT

concentrates on the root cause of the security error

rather than numerous attacks that exploit the root

cause.

2.2.3. Verification and Validation Strategies

This section describes the third and final

component of the meta-model, Verification and

Validation (V&V) strategies. V&V strategies are used

to assess and substantiate the security of the

application based on the analysis from the threat model

and the taxonomy of attacks. The sources of

vulnerabilities of the application (threat model) serve

as objects for V&V. The taxonomy of attacks provides

us with ways of exploiting these sources of

vulnerabilities. Together, they suggest the evolution of

V&V strategies to assess and substantiate the security

of the application.

We envision V&V strategies that provide us with

three levels of assessment depending on the amount of

information available about the development of a

suspect component and the stage of development cycle

that component is in:

1. Validate Only: This approach is used when we

have a component where its development is

complete and no development documentation

for the component is available. Validation is

achieved through only the execution of a suspect

application.

2. End game Verification and Validation: This

approach is used when we have the component

(development is complete) and we also have the

documentation for that component. We can have

various levels of documentation. For example,

we may have only the source code and nothing

else, or at the other end we may have complete

documentation about development of

component along with its source. Clearly,

validation is applicable because we have access

to the executable code. Additionally, we can

employ verification methods to development

artifacts to determine the extent to which proper,

security related development procedures were

followed during the development process.

3. Full Verification and Validation: Full

verification and validation is possible when the

component is in the initial stages of the

development cycle and we have complete access

to development activities and artifacts. In this

case we can instrument the development process

to achieve full V&V.

Based on the stage of development that the

application is in, and the amount of documentation

available, one of the above three approaches is used to

assess and substantiate the security of the application.

Although it is desirable that we analyze a component

during its development cycle, it is not practical to

consider that this will always be the case. There will

always be projects whose development cycle has been

completed without due consideration given to security.

Also there will be components developed for which no

information is available. So it is very important to

devise various levels of V&V for components at

various stages of development.

2.2.4. Relationship between Meta-Model

Components

All three components of the meta-model are inter-

related. Those relationships form the key part of the

meta-model. The threat model identifies the sources of

vulnerabilities in an application and its damage

potential. It thus establishes the attack surface and the

attack depth of the application. The taxonomy of

attacks identifies how vulnerabilities (identified by

threat model) can be exploited to attack the application.

V&V strategies provide us with methods for analyzing

the security of the software component. V&V

strategies are evolved using the sources of security

defects (threat model) and ways of exploiting these

sources (taxonomy of attacks).

3. An Example

To illustrate the power and applicability of the

framework we analyze a “broken” version of the

password program on SunOS and HP/UX (this is a

historic case of the TOCTOU (Time Of Check Time

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 6
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:30 UTC from IEEE Xplore. Restrictions apply.

Of Use) flaw which was first introduced in [5]). In

these operating systems, the user information and

his/her password is stored in the .rhosts file in the users

home directory. This particular version of the password

program took the name of password file as input from

the user. The program (1) opens and reads the

password file and retrieves information about the user

executing the program and then closes the password

file, (2) then creates and opens a temporary file “ptmp”

in the same directory as the password file, (3) opens

the password file and copies the unchanged contents

from old password file and the modified contents to the

temporary file, (4) and then closes the password file

and renames the temporary file to the new password

file.

The above program is a system application and is

thus operating at trust level 2. It is assumed here that

all the trust levels below it are secure. We also assume

that we have no documentation available about the

development of the password application. So we will

use the “validate only” approach.

We will begin the security assessment of the above

application by deriving the model from the meta-

model. This model has the same components as the

meta-model but is specific to the above application.

The model and its components are described in detail

below.

3.1 Threat Model

The above application manipulates passwords in an

operating system. Since passwords often are the only

line of defense in a computer system, the application is

highly sensitive. A security error in this application can

lead to a complete compromise of the system. We shall

begin the analysis by constructing its threat model. To

construct the threat model for the above application,

we need to identify the three components of the threat

model: interface, temporary components, and privilege
levels.

The above application operates in a multi-user

environment and is available to all users of the system.

So the application supports a system wide interface. It

uses a temporary file as a temporary component. The

above application operates with dynamic privileges as

it changes its privilege level to access resources

requiring administrative access. It operates with the

privilege of a user but dynamically changes its

privilege level to administrator level using setuid.

A number of sources of vulnerabilities are

recognized as we analyze the application using our

threat model:

1. Interface: The application takes input from all

users of a system. This makes it vulnerable to

attack from anyone who has an account on the

system. The part of the application that accepts

input is a source of vulnerability for the

application.

2. Temporary Components: The application

opens a temporary file with write access which

gives attackers one more avenue for attack. The

attacker can exploit the file to attack the system.

Thus, the temporary file is a source of

vulnerability for the application.

3. Privilege Levles: The application runs with

dynamic privileges. It runs with user and

administrator level privileges. Since the

application can run with administrator

privileges, it has the potential for completely

subverting system security. Thus, changing of

privilege levels is a source of vulnerability for

the application.

This simple analysis completes the threat model.

That is, the application has several sources of

vulnerability. These sources can be exploited if errors

are made in designing and/or coding the password

program. Additionally, the application is used for

manipulating passwords which makes it an enticing

target. Although it does not have a network interface it

does have the potential of providing root access, and if

compromised, can be used in a multi-step attack on the

system.

3.2 Taxonomy of Attacks

With the threat model complete we must use the

taxonomy of attacks to identify ways in which the

sources of vulnerabilities identified by the threat model

can be exploited. Analysis from the threat model shows

that the application has sources of vulnerabilities

(accepts system wide input, uses temporary file, and

runs with dynamic privileges) and that it runs with

administrative privilege levels for a period of time. We

shall now apply the taxonomy of attacks, VERDICT,

to the application to see how these sources can be

exploited.

3.2.1 VERDICT Validation

VERDICT Validation errors are caused by the

violation of limits imposed by the system. In this

section we will analyze ways in which an attacker can

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 7
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:30 UTC from IEEE Xplore. Restrictions apply.

exploit vulnerabilities of the password application

having validation errors.

Validation errors for a system wide interface:

1. The buffers used for storing of all input can be

exploited by attacks. Attacks exploiting buffer

overflow, heap overflow, format string, etc. can

be mounted on the application if proper bounds

checking is not performed.

2. The rights of the user invoking the application

can be exploited, if not properly validated. Any

user can change any other users password if the

rights are not properly validated.

3. Since the password file is provided as input to

the application, it too can be exploited if it is not

validated. The password file of another user can

be provided to the password application to

manipulate the passwords of other known users,

if proper validation is not performed.

Validation errors for temporary files being used:

1. Temporary files can be exploited in attacks on

an application. A user can change the contents

of a temporary file or even remove that file

while the application is still using it. A

temporary file can be created a priori with full

access permission given to an attacker, and then

used to manipulate passwords of other users

while their applications are still executing.

Validation errors for dynamic privileges:

1. Dynamic privileges can be exploited to gain

administrative access to the system. The attacker

can force an application to stop execution before

terminating root privilege and use its process to

gain root access to the system.

3.2.2 VERDICT Exposure

Exposure errors deal with revealing information

that can be used for direct or indirect attacks on an

application. In this section we analyze methods of

exploiting such vulnerabilities.

1. Improper access permission on the password

files can reveal information that can be used

indirectly for attacks on the application.

2. Improper access permissions on the temporary

file can reveal information that can be used for

attacking the application.

3. Information about a temporary file can be used

to attack an application. The users of the

application need not know the location and the

name of the temporary file being used by the

application, but in this case they did.

3.2.3 VERDICT Randomness

Security errors resulting from improper use of

random resources are classified as randomness errors.

We now identify ways of exploiting these types of

vulnerabilities in the password application scenario.

1. Improper or lack of use of a one-way function

for storing passwords in the password file. This

can be used to break or simply read the

passwords of other users.

2. Improper or lack of use of randomness for

keeping the name of temporary file secret. If the

name of temporary file is revealed, it can be

exploited to attack an application.

3.2.4 VERDICT Deallocation

Security errors caused by residual information are

classified as deallocation errors. In this section we

examine ways of exploiting vulnerabilities in the

password application through the use of deallocation

errors.

1. An improper procedure for deleting the original

password file can be exploited to attack an

application. If the original password file is not

properly deleted, it can be used to reveal

information about other users of the system.

3.3 Verification and Validation Strategies

Sections 3.1 and 3.2 outlined sources of

vulnerabilities and ways of exploiting these sources in

the password application. This section introduces V&V

strategies to ensure that the application is secure. This

is the final component of the meta-model.

We assume that for the password application we

have access only to the executable files and a general

description of how the application works. We do not

have access to any development documentation. Since

no development documentation is provided for the

application we can only apply Validation
1
 methods on

the application. That is, we can only execute the

application to determine validity characteristics.

Validation strategies are provided next that help in

assessing the security of the application. They are

organized according to ways of exploiting

vulnerabilities characterized by the taxonomy of

attacks outlined in the previous section.

Validation strategies for VERDICT Validation errors:

1
Note: Validation in this section differs from Validation errors in

Taxonomy of Attacks. Validation here refers to validation strategies
for detecting security errors.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 8
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:30 UTC from IEEE Xplore. Restrictions apply.

1. Validate if all input buffers have proper bounds

checking procedures.

2. Validate if the user invoking the application has

rights to manipulate password file and the

passwords of user that he/she tries to

manipulate.

3. Validate if the application determines that the

input file being used is the valid password file.

4. Validate if the application overwrites the real

password file even if the input file provided is

invalid.

5. Validate that the access permissions of the

temporary file being created are appropriate.

The user should not have any access rights to it.

6. Validate if the new password file has proper

access permissions.

7. Validate if the administrator privilege (assuming

the application uses dynamic privileges) is

terminated properly for all cases.

Validation Strategies for VERDICT Exposure errors:

1. Validate that the password files of the users

have proper access permissions and does not

reveal information about other users.

2. Validate if the temporary file has proper access

permissions and does not reveal information.

3. Validate if the temporary file and its location are

kept secret.

Validation Strategies for Randomness errors:

1. Validate that a strong one-way function is being

used to encrypt the passwords of the users in the

password file.

2. Validate that proper random variables have been

used by the application to keep the name of the

temporary file a secret.

Validation Strategies for Deallocation errors:

1. Validate that the proper deletion procedures

have been used for deleting the old password

file.

3.4 Results

The above is an example of application of the meta-

model for a system application. The application used

was a simple one; its operational scenarios contained

additional simplifying assumptions. Nonetheless, it

does exhibit those characteristics that enabled us to

convey the relationships among the meta-model

components.

On performing our analysis we see that the threat

model supports a characterization of the sources of

vulnerabilities of the application and enables an

estimate of the damage potential (assuming that the

vulnerabilities are successfully exploited). The

taxonomy of attacks indicates how those sources can

be exploited. V&V strategies are evolved based on

characteristics identified by the threat model and

taxonomy of attacks, and then used to detect the

security vulnerabilities in the above application.

If the V&V strategies outlined in section 3.2 had

been applied to the system software before it was

released, multiple security vulnerabilities would have

been discovered in that application. In particular, the

verification and validation strategies would have

reveled that the temporary file name and its location

are not hidden by the application, a serious security

flaw. Security errors like these form the building

blocks for the TOCTOU (Time of Check Time of Use)

flaw. An application of our framework would have

revealed these errors, and the TOCTOU flaw could

have been avoided.

4. Conclusion

We have introduced a framework for assessing and

substantiating the security of a software component of

computer system. The framework provides us with a

systematic and standardized approach to assess the

security of a computer system component. In

particular, the trust levels provide us with a multi-level

approach towards assessing security by dividing a

computer system into multiple levels. The meta-model

is used to assess security at any of the trust levels. The

meta-model uses a threat model to identify sources of

vulnerabilities of the system and gauge the amount of

damage in case a successful attack is mounted on the

application. The taxonomy of attacks provides a

categorical classification of the ways in which the

sources of vulnerabilities can be exploited. V&V

strategies enable us to assess the extent to which a

component is secure. Furthermore, verification and

validation can be performed at any stage of

development depending on how and when

development information is available. Although

security assessment of a component during its

development is best, it is not vital for the success of the

analysis using the framework. The real success of the

analysis is a function of how well the synergy between

the threat model, the taxonomy of attacks and the

verification and validation strategies permit the

identification of security flaws. Although in its

infancy, we do contend that this synergy exists and

indicates a step in the right direction.

The framework introduced in this paper is not

limited to computer systems and can be applied to any

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 9
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:30 UTC from IEEE Xplore. Restrictions apply.

application that operates in a hostile environment and

wants to improve its security.

5. Future Work

The meta-model is in an evolving research effort

and much more still remains to be done. A quantitative

system for measuring potential threats to an application

needs to be integrated into the threat model. We also

need a wider taxonomy to enhance the relationship

between the meta-model components. More effective

approaches for evolving V&V strategies have to be

devised. The synergetic relationships between the

components of the meta-model need to be refined.

6. References

[1] Abbot, R.P. et al., “Security Analysis and

Enhancements of Computer Operating Systems”,

Technical Report NBSIR 76-1041, Lawrence

Livermore Laboratory, Institute for Computer Science

and Technology, 1976.

[2] Amoroso, Ed, “Towards an Approach to Measuring

Software Trust”, IEEE Computer Society Symposium

on Research in Security and Privacy, 1981, pp. 198-

218.

[3] Aslam, T., Krsul, I., and Spafford, E. H., “Use of

Taxonomy of Security Faults”, 19th National

Information Systems Security Conference, 1996.

[4] Bernaschi, M., Gabrielli, E., and Mancini, L. V.,

“REMUS: A Security Enhanced Operating System”,

ACM Transactions on Information and System

Security, Vol. 5, No. 1, 2002, pp. 36-61.

[5] Bisbey, Richard II and Hollingworth, Dennis, “Final

Report Research ISI / SR-78-13”, University of

Southern California, Information Sciences Institute,

1978.

[6] Bishop, Matt, “How to Write a Setuid Program”, Cray

User Group Proceedings, 1986.

[7] Bishop, Matt and Dilger, Michael, “Checking for Race

Conditions in File Accesses”, Computer Systems, 9(2),

1996, pp. 131-152.

[8] Common Criteria Board, “Common Criteria for

Information Technology Security Evaluation”, Version

2.1, 1999.

[9] Computer Science and Telecommunications Board,

“Trust in Cyberspace”, National Academy Press, 1999.

[10] Cowan, Crispin et al., “StackGuard: Automatic

Adaptive Detection and Prevention of Buffer-Overflow

Attacks”, Proc. 7th USENIX Security Conference,

1998, pp. 63-78.

[11] Howard, Michael and LeBlanc, David C. “Writing

Secure Code”, Second ed., Microsoft Press, 2002.

[12] Lough, Daniel L., “A Taxonomy of Computer Attacks

with Applications to Wireless Networks”, PhD

Dissertation, Virginia Tech, 2001.

[13] Parnas, D. L., et al., “Evaluation of Safety-Critical

Software”, Communications of the ACM, Vol. 33, No.

6, 1990.

[14] Pfleeger, S. L., Fenton, N., and Page, S., “Evaluating

Software Engineering Standards”, IEEE Computer,

Volume 27, No. 9, 1994, pp. 71-79.

[15] Simth, T., “Hacker jailed for revenge sewage attacks”,

the Register, 2001, available at

http://www.theregister.co.uk/content/4/22579.html.

[16] Smith, R. E. “Cost Profile of a Highly Assured, Secure

Operating System”, ACM Transactions on Information

and System Security, Vol. 4, No. 1, 2001, pp. 72-101.

[17] Systems Security Engineering-Capability Maturity

Model Project, “Model Description”, Version 2.0.1,

1999.

[18] Tzu, Sun, “The Art of War”, 500 B.C.

[19] Thompson, Ken “Reflections on Trusting Trust”,

Communications of the ACM, Vol. 27, No. 8, 1984,

pp. 761-773.

[20] Viega, John and McGraw, Gary “Building Secure

Software: How to avoid security problems the right

way”, Addison Wesley Professional, 2001.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 10
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:30 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

