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Abstract 
 

This paper introduces a supporting model for a unique 
Battery-Sensing Intrusion Protection System (B-SIPS) for 
mobile computers, which alerts when power changes are 
detected on small wireless devices. An analytical model is 
employed to examine smart battery characteristics to 
support the theoretical intrusion detection limits and 
capabilities of B-SIPS. Battery-based attack detections 
can be significantly increased by investigating variable 
smart battery polling rates, system management bus 
speeds, and attack execution times. This research explores 
the modification of smart battery polling rates in 
conjunction with the variance of malicious network 
activity. An optimum static polling rate for each of the 
selected illicit network attack densities was determined by 
altering these two parameters. These optimum static 
polling rates introduce minimum and maximum 
thresholds for the various scenarios mobile devices 
encounter on a daily basis. Future work will investigate 
dynamic solutions to optimize battery lifetime under a 
range of circumstances by encompassing the data results 
found in this study. 
 
1. Introduction 
 

The primary challenges in developing defensive 
applications such as intrusion detection systems (IDSs) for 
small, wireless computers are limited processing capability, 
memory, and battery resources. Traditionally, network and 
host-based IDSs employ rules to detect known malicious 
activity. Anomaly detection systems (ADSs) use statistical 
methods to establish a system profile and then trigger alerts 
when that normal profile is violated. This research initiative 
is developing a battery-based detection system that employs 
mobile devices as sensors that use an instantaneous current-
based threshold algorithm to indicate anomalous activity 
and trigger alerts. 

An indicator that a rogue process is being run on a 
device without the knowledge of the user is an unexplained 
increase in the instantaneous current drawn from a device’s 
battery. This could indicate anomalous activity such as a 
worm spread, virus infection, network probing, flooding, or 
denial of service (DoS) attack. All of these malicious 
activities can cause the battery current to rise such that a 

well-designed system could detect the illicit activity. The 
Battery-Sensing Intrusion Protection System (B-SIPS) 
detection capability provides security administrators (SAs) 
with a complementary tool in a network environment as a 
nontraditional method to detect anomalous battery 
exhaustion, IEEE 802.11 (Wi-Fi), and IEEE 802.15.1 
Bluetooth attack activity that standard IDSs are incapable 
of detecting [1].  

This research examines various means to refine the      
B-SIPS detection capabilities. Smart battery polling rates, 
system management bus speeds, and attack execution times 
can be used to improve the theoretical accuracy of battery-
based anomaly detection. 

The rest of this paper is structured as follows. Section 2 
presents related work. Section 3 discusses the smart battery 
polling model’s design. Section 4 presents the testing and 
analysis of various battery characteristics during attacks 
against small mobile computers. Section 5 provides a 
conclusion and direction for future work. 
 
2. Related Work 
 

The security of power-constrained mobile hosts is 
generally considered as an afterthought in comparison to 
service availability. Battery power is an important resource 
in the wireless domain, especially for small, mobile 
devices. This presents designers with the perplexing 
problem of choosing more security at the expense of greater 
power usage and potentially less service availability. This is 
an unresolved tradeoff that continues to challenge network 
and system developers. Establishing secure communication 
channels through proper authentication could increase 
service accessibility from a user’s perspective but may 
further increase the device’s computational and 
transmission requirements, leading to faster battery drain. 

An Advanced Power Management (APM) technical 
specification was developed to better manage device power 
usage to extend battery life [2]. APM is an application 
programming interface which allowed computer and Basic 
Input Output System (BIOS) manufacturers to include 
power management into their BIOS and operating systems 
(OSs), thus reducing energy consumption. The next 
evolution in power management was the Advanced 
Configuration and Power Interface (ACPI) that established 
an industry-standard for interfaces to OS directed 
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configuration and power management on laptops, desktops, 
and servers [3]. The ACPI specification enabled power 
management technology to evolve independently in OSs 
and hardware while ensuring that they continue to work 
together. The Smart Battery System Implementers Forum 
offered an open systems communication standard for 
industry-wide adoption that described data sharing directly 
between batteries and the devices they powered [4]. Their 
introduction of a Smart Battery Data (SBData) specification 
was used to monitor rechargeable battery packs and to 
report information to the System Management Bus 
(SMBus), which implemented a two-wire bus design to 
communicate battery data directly to the device [5] [6]. 

Stajano and Anderson [7] suggested the idea of energy 
depletion attacks as early as 1999, which they described as 
sleep deprivation torture. An emerging class of attacks, 
battery exhaustion and denial of sleep attacks represent 
malicious situations whereby the device’s battery has been 
unknowingly discharged, and thus the user is deprived 
access to information [8] [9]. Since system designers of 
energy-constrained devices incorporate power management 
to monitor active processes and to shutdown unnecessary 
components, sleep deprivation and power exhaustion 
attacks seek to invade and exploit the power management 
system to inhibit the device’s ability to shift into reduced 
power states. 

In analyzing battery attacks against laptop computers, 
Martin et al. [8] further subdivided sleep deprivation 
attacks into three basic categories: service-requesting, 
benign, and malignant power attacks. A service-requesting 
power attack attempts to repeatedly connect to the mobile 
device with genuine service requests with the intent of 
draining power from the device’s battery. A benign power 
attack attempts to start a power demanding process or 
component operation on the host to rapidly drain its battery. 
A malignant power attack successfully infiltrates the host 
and changes programs to devour much more power than is 
typically required. 

As mobile computers become more widely adopted and 
deployed, they become viable targets for attackers. Racic   
et al. [10] demonstrated successful battery exhaustion 
attacks that transited commercial cellular phone networks 
to exploit vulnerabilities in an insecure multimedia 
messaging service, context retention in the packet data 
protocol, and the paging channel. These and other attacks 
could drain the battery power of target devices and render 
them useless in a short period of time by keeping them in a 
busy state. Most concerning is the fact that the cellular 
phone user and network administrator were unaware that 
the attack was ongoing. An attack of this nature will use 
more device power, and thus demonstrates the potential 
effectiveness of an integrated battery-sensing IDS [11]. 

Nash et al. [12] developed a battery constraints-based 
IDS for laptop computers aimed toward defending the 
system against various classes of battery exhaustion 
attacks. They leveraged the laptop’s robust computational 
power to estimate power consumption of the overall system 

based on metrics which included CPU load, disk read and 
write access, and network transmissions and receptions by 
using a multiple linear regression model. This data was 
combined with performance data counters in the Windows 
NT OS environment. Using multiple linear regressions 
allowed them to find the correlation of coefficients for each 
of the measured metrics and a way to determine component 
power usage from the overall device’s power consumption. 
Moreover, they adapted this concept of estimating system-
wide power consumption on a per process basis as a 
method for indicating possible intrusions and identifying 
rogue processes on mobile devices. As with any trigger-
based system, the challenge is in determining the proper 
thresholds. Unauthorized activity that falls below the 
settings may go undetected. 

For mobile handheld devices, Jacoby [13] developed a 
Battery-Based Intrusion Detection (B-BID) approach as a 
purely host-centric IDS solution. This system was 
comprised of three distinctive IDS applications based on 
the power capabilities of the device regarding resources and 
processor clock speeds. At the low power end (fewer 
resources and slower clock speeds) was the Host Intrusion 
Detection Engine, which was a rules-based program tuned 
to determine battery behavior abnormalities based on static 
threshold levels in the busy and idle states. In the mid 
range, a complementary module called the Source Port 
Intrusion Engine was employed to capture network packet 
information during a suspected attack. At the high end, the 
Host Analysis Signature Trace Engine was used to capture 
and correlate signature patterns using periodogram analysis 
in the frequency domain to determine the dominant 
frequency and magnitude (x,y) pairs. 

To our knowledge, this system presented the first 
feasible working IDS solution for a small mobile device 
using battery constraints. However, this host-based system 
lacked reporting and correlation capabilities to warn 
upstream defensive resources in a net-centric environment. 
Another deficiency was its static threshold setting and that 
it allowed the user the option to monitor the system 
automatically or to manually invoke actions to impede an 
attack. Although the manual approach is possible, it is 
unlikely that the user would monitor the host continuously 
and be able to respond fast enough to prevent substantial 
power depletion on a regular basis. As a concept, the        
B-BID approach presents fertile ground for further 
development, scalability, and research extension. 

B-SIPS research is developing an innovative battery 
power constraint-based model and system to help defend 
small mobile computers, smart cellular phones, and 
communication-enhanced Personal Digital Assistants 
(PDAs). Interoperability and low power design were 
inspired by the demand to significantly increase battery life 
and thus the usefulness of small mobile hosts. Battery 
constraint-based intrusion detection and this B-SIPS 
research endeavor would not be feasible without these 
technological advances in ACPI and smart batteries. 
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3. Model Design 
 

When a small mobile device is kept in a high activity 
state for extended periods of time, the battery power is 
depleted faster than normal, decreasing its expected charge 
life. This research seeks to protect the device’s battery life 
by detecting anomalous battery draining activities. The 
research goal is to optimize the static polling period mobile 
devices use to determine malicious power consumption. An 
assumption was made that once an attack is detected it is 
immediately eliminated, thus affording each attack with a 
maximum duration of one smart battery polling time 
interval. 

With this assumption stated, an absolute maximum 
polling rate was established. To accomplish this, 
specifications associated with the device’s processor, 
SMBus battery polling mechanism, intrusion detection 
algorithm, and wireless networking transmission were 
ascertained. The primary mobile device used in this B-SIPS 
research effort is the Dell Axim X51 PDA. Its 
specifications regarding the required time to transmit 
SBData to the processor exceeded that of the data 
information processing by more than an order of 
magnitude. The equations to determine the smart battery’s 
maximum polling rate are presented in Fig. 1.  

With present technology, smart batteries transmit 879 
bits using the SMBus [6], thus requiring a maximum 
polling rate of 879 divided by the standard 100Kbps 
transmission rate [14]. This physical constraint is 
determined to be 8.79ms. With the maximum polling rate 
calculations complete, the next step in optimizing the 
communication between the device and its smart battery 
was to determine the specific rate at which the battery 
should be polled. In doing so, it was first necessary to 
consider flaws in the current polling mechanism, how those 
flaws could be leveraged by malicious users, and how the 
flaws might be mitigated. 

From the attacker’s perspective, precisely timed attacks 
have the potential to defeat the B-SIPS client detection 
capabilities. If the attacker knew the precise timing of the 
polling rate of the battery’s chipset, then the attacker could 
attempt to craft intrusion packets to arrive within those 
limited time windows between the battery’s polling 
intervals, as shown in Fig. 2. The present smart battery 
specification dictates instantaneous current sampling once 
per second, so this packet crafting is a possibility, although 
remote. B-SIPS’ answer to this issue is that the attacker will 

most likely be unable to manipulate both his attack’s timing 
and the energy usage of the targeted device simultaneously. 
Since the attack is transiting a wireless environment, the 
timing would be even more difficult, if not impossible to 
control. Alternatively, if the smart battery could be 
designed to randomly sample its instantaneous current 
within that one second interval and still provide comparable 
performance and diagnostic readings, then this precise 
timing attack manipulation would be exceedingly difficult 
to execute. 

This leads to a noted limitation that the smart battery 
provides its diagnostic readings only once per second. At 
present, original equipment manufacturers (OEMs) have 
built this generation of smart batteries to provide a limited 
set of information to the OS for managing the device’s 
power usage and recharging the battery. In the future, if 
OEMs could improve the smart battery’s chipset to poll at a 
faster rate to accommodate the needs of battery-based IDSs, 
the timing attack window concern would be mitigated. This 
would provide the added benefit of potentially helping      
B-SIPS detect more attacks. The idea hinges on the fact that 
certain attacks could occur at speeds that exceed the 
battery’s sampling speed, so those attacks could be missed. 
This research is being conducted to determine the typical 
speed of attack executions with regard to current device 
processing rates and bus speeds. Although B-SIPS cannot 
solve this issue, this research may suggest the appropriate 
sampling speed for next generation smart batteries to 
further enhance the detection system’s capabilities. 

When determining appropriate smart battery sampling 
speeds, the density of malicious network traffic must be 
accounted for. B-SIPS’ instantaneous current-based 
threshold algorithm will detect the total number of attacks 
(num_attacks) against the mobile system throughout its 
battery discharge period. The system’s polling rate refers to 
the time period, in seconds, between each SBData query, 
the total battery lifetime refers to the maximum charge life, 
in mA, dictated by the manufacturer and battery model, and 
the battery voltage (vcc_battery) represents the standard 
power drain associated with the device. The parameters 
used to determine the lifetime of a mobile device are shown 
in the pseudocode in Fig. 3. 
 

Single_byte_variables = ACLineStatus + BatteryFlag +BatteryLifePercent 
+ Reserved1 + Reserved2 + Reserved3 + BackupBatteryFlag + 
BackupBatteryLifePercent + BatteryChemistry ; 

Double_byte_variables = BatteryLifeTime + BatteryFullLifeTime + 
BackupBatteryLifeTime + BackupBatteryFullLifeTime + 
BatteryVoltage + BatteryCurrent + BatteryAverageCurrent + 
BatteryAverageInterval + BatterymAHourConsumed + 
BatteryTemperature + BackupBatteryVoltage ; 

Transmit_bytes = Single_byte_variables + (Double_byte_variables * 2) ; 
Maximum_polling_rate = (Transmit_bytes * 8) / SMBus_Tx_rate 

Fig. 1. Maximum polling rate determination 

 
Fig. 2. Battery polling cycle timing attack window 
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4. Testing and Analysis 
 

The modeled experiment introduces and explores an 
approach to optimizing the effect of smart battery polling in 
mobile devices equipped with B-SIPS by changing the 
static sampling rate. The study intends to increase the 
lifetime of mobile devices, while decreasing the likelihood 
of device and application malfunction due to malicious 
network traffic. To accomplish this, steps were taken to 
determine the optimum polling rates for various network 
attack densities, as shown in Section 4.1. Next, Section 4.2 
shows how each of the optimum polling rates performs in 
comparison to the currently implemented polling rate. This 
section also draws conclusions about the benefits and 
drawbacks of varying the static polling rates. 
 
4.1. Optimum Polling Rate Determination 
 

Two relevant parameters should be considered when 
constructing a testing platform and optimization 
mechanism for smart battery polling schemes. The first of 
these is the polling rate. By modifying the polling rate, the 
device obtains an opportunity to improve one of two 
mutually exclusive lifetime increasing advantages: 
overhead reduction and rapid attack detection. The first 
opportunity involves overhead reduction by refraining from 
polling the battery more often than is necessary for a given 
set of network characteristics. Devices in low attack density 
environments benefit by reducing their smart battery 
polling interval. 

The term attack density describes the volume of network 
attacks experienced by a mobile device over a single smart 
battery discharge period, where attacks represent B-SIPS 
identified threshold violations. While overhead reduction 
focuses on low network attack densities, rapid attack 
detection provides a second lifetime increasing advantage. 
This arises in malicious networks where devices are 
constantly being bombarded with attacks. High network 
attack densities obtain an advantage by polling the device’s 
smart battery more frequently, due to the assumption that 

malicious network attacks, once detected, are immediately 
disarmed. This assumption provides the device with an 
effective way to save energy by reducing its polling rate, 
and thus, capturing and disabling malicious traffic in a 
timely fashion. 

As stated previously, these two methods of energy 
conservation are mutually exclusive, and are dependant on 
the state of the network attack density. Calculating the most 
efficient use of the smart battery, while maximizing the 
security provided by B-SIPS, requires varying the battery’s 
polling rate and the network attack density. 

To ensure that various network scenarios were depicted 
in the study, a MATLAB implementation of the pseudocode 
shown in Fig. 3 was constructed to calculate the optimum 
polling rate for each of the following network attack 
densities: 0, 1, 10, 100, 1,000, and 10,000 – 100,000 (in 
increments of 10,000). For each of these network attack 
densities, the lifetime was calculated with 60,000 polling 
rates, ranging from the battery being polled once every 600 
seconds (0.00167Hz) to the battery being polled once every 
0.01 seconds (100Hz). Once all calculations were complete, 
the lifetimes associated with each of the polling rates were 
graphed and the optimum lifetime was denoted with a black 
circle. The visual representation associated with the Dell 
Axim X51 specific hardware characteristics is depicted in 
Fig. 4. Optimum polling rates for each of the tested 
network attack densities are presented in Table 1. 

for (1/10 sec; 1/10 sec; 600 sec) 
     battery_attack_time(sec) = polling_rate(sec) * num_attacks 

 battery_attack_mW = battery_attack_time(sec) *   
  processor_active_rate(mW/sec) 
 battery_attack_mA = battery_attack_mW / vcc_battery 
 battery_remaining_mA = total_battery_lifetime(mA)  -  
  battery_attack_mA 
 battery_remaining_mW = battery_remaining_mA * vcc_battery 
 polls_per_min = 60 (sec/min) / polling_rate(sec) 
 time_spent_polling = polls_per_min * battery_poll_time 
 battery_mW_per_min = (time_spent_polling * processor_active_rate) 
  + (time_not_spent_polling * processor_idle_rate) 
 battery_remaining_mins = battery_remaining_mW /  
   battery_mW_per_min 
 lifetime_mins = ( battery_attack_time(sec) / 60 (sec/hr)) + 
  battery_remaining_mins 
 if lifetime_mins > max_lifetime 
  max_lifetime = lifetime_mins 

 

Fig. 3. Static optimum polling rate  
determination pseudocode  

Fig. 4. Effect of battery polling on PDA lifetime 

Table 1. 
Network Density Optimum Polling Rates 

Optimum Polling 
Rate 

Optimum Polling 
Rate Number 

of Attacks 
Sec Hz 

Number 
of Attacks 

Sec Hz 
0 600.00  0.0017 40,000 0.08 12.5000 
1 20.02  0.0500 50,000 0.07 14.2857 
10 6.32 0.1582 60,000 0.06 16.6667 

100 1.98 0.5051 70,000 0.06 16.6667 
1,000 0.61 1.6393 80,000 0.05 20.0000 

10,000 0.18 5.5556 90,000 0.05 20.0000 
20,000 0.12 8.3333 100,000 0.04 25.0000 
30,000 0.10 10.0000 * * * 
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4.2. Lifetime Calculations  
 

These optimum polling rates were calculated for each of 
the network attack densities to determine the battery 
lifetime for each rate under various attack scenarios. A 
second MATLAB function used the polling rate to produce 
an array containing the lifetimes associated with each of the 
15 network attack densities specified in Section 4.1. 
Running this program sequentially, with various input 
values, affords users with a useful graphical representation 
of how modifying the static polling rates affect the 
discharge time of the device under varying network attack 
densities. 

The dashed lines in the Fig. 5 depict the Dell Axim X51 
lifetime spectrum available for each polling rate determined 
in Section 4.1. The bold hashed line indicates the lifetime 
associated with the 1Hz polling rate currently used in OEM 
hardware, and the bold cross-hashed line indicates the 
lifetime of the fastest polling rate currently permitted by 
device hardware.  

The x-axis represents the number of attacks the system 
undergoes during its battery charge lifetime. For the current 
polling rate, the smart battery is depleted in less than an 
hour for network attack densities greater than 20,000; in 
this research, speedy depletion is referred to as battery 
lifetime grounding. On the opposite end of the spectrum, 
the network attack density barely affects the lifetime of 
devices utilizing the minimum polling rate. This minimum 
polling rate, however, does not have the capability of 
supplying the device with even half of the lifetime that the 
current polling rate provides low network attack densities. 
Several of the optimized polling rates, specifically those 
above 10,000 attacks, provide a compromise between the 
lifetimes associated with the currently implemented and the 
minimum polling rates. These polling rates offer lifetimes 
slightly shorter than the current polling rate under low 
network attack densities, while drastically increasing the 
number of attacks required to ground the lifetime of the 

smart battery enabled device. 
Finally, Table 2 displays the lifetime, in hours, for the 

optimum polling rate in several representative network 
scenarios, where attack densities ranged from 1 – 100,000; 
optimal rate lifetimes are bolded in the table. This data 
confirms the research hypothesis that overhead reduction 
and rapid attack detection are mutually exclusive energy 
conserving methods. While the battery lifetime of a 0.05Hz 
polling rate is phenomenal when there are no, or few, 
network attacks, as indicated by overhead reduction, the 
device resources are rapidly depleted upon entering a 
network with an attack density of more than 1,000. Using a 
polling rate of 25Hz, on the other hand, offers the device a 
minimum of six hours of usage, even in extremely high 
network attack densities. The drawback to using this 
polling rate, however, is the overhead associated with the 
constant transmissions between the battery and device. This 
overhead causes a decrease in maximum smart battery 
lifetime to a degree that may not be a feasible expectation 
for user acceptance.  
 
5. Conclusion and Future Work 
 

The concept of employing battery constraints as a means 
of intrusion detection is a relatively new capability that was 
only recently made possible by developments in smart 
battery and ACPI technologies. The B-SIPS design offers a 
hybrid intrusion detection method that can serve to protect 
small mobile computers from anomalous activity which Fig. 5. Effect of polling approaches on smart 

battery lifetime 

Table 2. 
Network Optimal Polling Rate Lifetimes 

 
Lifetime in Hours 

For # Attacks 
 

Attack 
Density 

Polling 
Rate 

0 1 10 100 
1  0.05Hz 12.678 12.659 12.482 10.711 

100   0.50Hz 12.551 12.549 12.532 12.358 
n/a 1Hz † 12.416 12.415 12.406 12.320 

10,000 5.56Hz 11.342 11.342 11.340 11.326 
100,000  25Hz 8.6889 8.6888 8.6886 8.6862 

  1,000 10,000 20,000 30,000 
1  0.05Hz 0.0595 0.0595 0.0595 0.0595 

100   0.50Hz 10.625 0.0595 0.0595 0.0595 
n/a 1Hz † 11.454 2.7951 0.0595 0.0595 

10,000) 5.56Hz 11.184 9.7608 8.1795 6.5983 
100,000  25Hz 8.6620 8.4201 8.1513 7.8826 

  40,000 50,000 60,000 70,000 
1  0.05Hz 0.0595 0.0595 0.0595 0.0595 

100  0.50Hz 0.0595 0.0595 0.0595 0.0595 
n/a 1Hz † 0.0595 0.0595 0.0595 0.0595 

10,000  5.56Hz 5.0171 3.4358 1.8546 0.2733 
100,000  25Hz 7.6138 7.3451 7.0763 6.8076 

  80,000 90,000 100,000 * 
1 0.05Hz 0.0595 0.0595 0.0595 * 

100   0.50Hz 0.0595 0.0595 0.0595 * 
n/a 1Hz † 0.0595 0.0595 0.0595 * 

10,000) 5.56Hz 0.0595 0.0595 0.0595 * 
100,000  25Hz 6.5388 6.2701 6.0013 * 

† Denotes OEM standard smart battery polling rate. 
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seeks to drain battery power excessively. This research 
asserts that small mobile hosts in a net-centric environment 
can be protected by B-SIPS, which triggers alerts based on 
power utilization threshold breaches detected by an 
innovative instantaneous current-based threshold algorithm. 

This endeavor explores the optimization of smart battery 
polling, with an aim to increase device lifetime and also 
increase the number of anomalous attacks that devices can 
both detect and disable. The study first determined the 
maximum polling rate that the Dell Axim X51 PDA could 
theoretically support. It then calculated optimum polling 
rates for a variety of network scenarios and used the 
lifetimes those polling rates provided to compare the 
effectiveness with that of the currently implemented 1Hz 
polling rate. As shown in Fig. 5, the optimized polling rates 
serve as a compromise, both in terms of benefits and 
disadvantages, between the currently implemented polling 
rate and the device maximum polling rate. Optimized 
polling rates prevented the device lifetime from being 
quickly grounded but were not able to provide the device 
with lifetimes as long as the currently implemented polling 
rates during periods of minimal network attack densities. 

As an extension of the research presented in this paper, a 
dynamic polling rate analytical model is being developed 
and examined. Due to data collected and conclusions drawn 
from the static simulations of this research, a dynamic 
implementation of the smart battery polling mechanism is 
likely to present the best possible solution for B-SIPS 
detection functionality. This solution will allow devices to 
maximize their lifetimes for the vast majority of network 
attack densities, rather than having to select one of two 
mutually exclusive energy saving schemes, as their static 
counterparts must do. The dynamic polling rate will inherit 
its minimum polling rate from the optimum polling rate for 
a network attack density of 1, or 0.05Hz, and its maximum 
polling rate from the optimum polling rate for a network 
attack density of 100,000, or 25Hz. The dynamic polling 
algorithm will inform the device and its battery when the 
next poll will occur and will be highly dependent on the 
state of the current network attack density. The dynamic 
solution will allow future smart batteries to have the 
capability to learn about the present state of the device’s 
network and to adapt their polling intervals accordingly. 
This will, in turn, protect the battery from malicious charge 
depletion and could also help B-SIPS defend running 

device applications from being altered, corrupted, or 
eavesdropped upon. 
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