
Implementing Dynamic Address Changes in
ContikiOS

Tanner Preiss, Matthew Sherburne, Randy Marchany, Joseph Tront
Bradley Department of Electrical Engineering and Computer Engineering

Virginia Tech Information Technology Security Office

Virginia Tech, Blacksburg, Virginia 24061

Email: {tpreiss, msherbur, marchany, jgtront}@vt.edu

Abstract—To secure the Internet of Things (IoT) running
on IPv6 over Low-Powered Wireless Personal Area Networks
(6LoWPAN) by implementing a Moving Target IPv6 Defense
(MT6D), there must first be a method developed to dynamically
change IPv6 addresses over this resource constrained wireless
network. We will discuss how we implemented this dynamic
address change and how in doing so, we also had to change
the Rime and MAC address thus implementing a moving target
defense at Layers 2 and 3 of the OSI Model. We conducted our
experiments in Contiki OS and utilized the Routing over Low-
powered and Lossy Networks (RPL) protocol to perform the
address changes between a node and its parent border router.

Index Terms—6LoWPAN, MT6D, IPv6, RPL, Contik OS, IoT

I. INTRODUCTION

The devices that make up the IoT, such as motion, tem-

perature, and power sensors can be directly accessible over

the Internet now that these devices are IPv6 addressable. A

malicious actor has the ability to monitor traffic originating

from a static IP address. There needs to be a method in which

to implement a moving target defense on these low-powered,

resource-constrained devices.

We will discuss the background of research into the security

of IPv6, Rime stack, μIP, MT6D, 6LoWPAN, RPL, and

ICMPv6 RPL Control Messages in Section 2. In Section 3 we

will discuss a typical 6LoWPAN design and our 6LoWPAN

test bed design. Section 4 discusses the initial address setup in

Contiki OS. Section 5 will discuss our current implementation

to dynamically assign changing IPv6 addresses to wireless

sensor nodes. Section 6 will discuss our observations of the

effect that changing addresses has on the network. Finally,

Section 7 and 8 presents our Future Work and Conclusion.

II. BACKGROUND

To understand how to dynamically change addresses in a

wireless sensor that is running Contiki OS [1], we must first

discuss the network protocols, network stacks, and control

messages that are used in Contiki OS and then discuss how

a global IPv6 address is formed in Contiki OS. We will then

discuss in detail the implementation to dynamically change an

IPv6 global address in Contiki OS, in the application layer.

Contiki OS prides itself on the implementation of IPv6 in

a wireless sensor network, however Contiki OS accomplishes

this by means of compression and using a combination of

protocols to communicate to the global Internet and to local

nodes.

A. Contiki OS Challenges

We preface this discussion by identifying a few inherent

challenges and difficulties that Contiki OS contains, as do

other operating systems which predominantly reside on em-

bedded systems such as TinyOS[2], BeRTOS[3], SymbOS[4].

The first and most important challenge is that Contiki OS

is designed to compress all addresses and retain only a

few addresses that are able to form larger IPv6 addresses.

Although the Contiki OS is written in the C language, the

limited resources on embedded systems mean that traditional

libraries and data structures are not included. This includes

the common data structures used in IPv6 and networking

code. The second challenge is that the entire Contiki OS is

compiled and uploaded to the embedded system at once. This

means that all the applications are loaded at compile time

and executed using a system of timers. The limited ROM

space on embedded systems means that each byte of memory

is valuable and so ContikiOS has addressed this issue by

allowing access to all memory at all times, meaning that no

divisions exist between kernel and application level code. This

can be valuable but also means that every global variable has

the potential to be accessed from various locations throughout

the code. Complete knowledge of the codebase and system

design is necessary when dealing with global variables as the

amount of resources necessary for a lock or mutex is often

too large to be feasible.

B. IPv6

IP version 6 (IPv6) [5] was developed in response to the

shortage of IPv4 addresses. IPv6, with 128-bits of addressing,

allows for significantly more devices to be uniquely addressed

on the Internet than with IPv4s 32-bits of addressing. The large

address space provides ample addressing for the expansive

Internet of Things.

C. Moving Target IPv6 Defense

Virginia Tech researchers, M. Dunlop et. al [6], developed

an IPv6 defense scheme that provides security through ob-

fuscation by rapidly changing addresses on two end points,

similar to frequency hopping in radio communications. We

International Conference on Information Society (i-Society 2014)

978-1-908320-38/4/$25.00©2014 IEEE 222

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 19:07:05 UTC from IEEE Xplore. Restrictions apply.

are using this defense mechanism as a future goal for wireless

sensor networks.

D. 6LoWPAN

IPv6 cannot be used to provide an address to just any device.

The majority of wireless sensor networks utilize IPv6 over

Low power Wireless Personal Area Networks (6LoWPAN) in

order to adapt IPv6 on top of the wireless sensor network

protocol. RFC 4919 [7] and RFC 4944 [8] address the issues

of assigning IPv6 to wireless sensor network devices. The base

specification of 6LoWPAN is RFC 6282 [9] and a Neighbor

Discovery update to the protocol is RFC 6775 [10].

E. Rime Stack and μIP (micro IP)

Directly related to IPv6 is Contiki OS’ version of the

IPv6 stack called the Rime stack [11]. This stack uses Rime

addresses, and is used when the cost of a full IPv6 is too large

for the platform’s constrained resources. The Rime stack is

capable of multicast communications, node to node commu-

nications, as well as more complex situations such as thwarting

network floods. The Rime stack operates to minimize the

bandwidth usage as well as minimize power consumption on

routers and nodes where sleep cycles are implemented.

μIP is an open source TCP/IP stack that was originally

developed by Adam Dunkels, also the creator of Contiki OS.

In 2008, Cisco adopted the μIP stack and created a μIPv6

stack to accompany the original implementation. The μIP stack

is originally designed for use on platforms that do not have

operating systems and provides a stack that uses very little

code, overhead, and processing power to maintain. It primarily

accomplishes this compression by only using a single packet

buffer instead of the typical IP protocol stack which stores

many copies of packets.

F. RPL

RPL is IPv6 Routing Protocol for Low-Power and Lossy

Networks and is defined in RFC 6550 [12]. For the purpose

of our test bed design we will define the primary terms for

RPL network design as being RPL Instance, Directed Acyclic

Graph (DAG), Destination-Oriented Directed Acyclic Graph

(DODAG) and then define the ICMPv6 RPL control messages:

DODAG Information Object (DIO), DODAG Information So-

licitation (DIS), Destination Advertisement Object.

RPL uses a hierarchy of terms to group the nodes into a

network topology. In brief, a single Low-Power and Lossy

Network (LLN) consists of one or more RPL Instances, an

RPL Instance consists of one or more DODAGs each with the

same RPLInstanceID, and finally a DODAG consists of one

or more RPL nodes where at least one node is the DAG root.

RPL Instances function independently of other RPL In-

stances and this means that an RPL node can be both a leaf

node in one instance and a root node in another instance. In

our test bed, described in section 3, we have a single DODAG

contained within a single RPL Instance, but it is easy to see

how the node relationships and neighborhoods can become

complicated in an enterprise setup. A DAG is a directed acyclic

graph, where all edges are oriented such that no cycles exist

and all edges terminate at one or more root nodes. In our

setup, a DODAG is a DAG, but with a single DAG root,

such that all edges are directed and terminate at the DAG

root. Furthermore our DAG root acts as a border router for

the DODAG and aggregates routes in the DODAG which are

used to communicate with other protocols such as IPv6.

G. ICMPv6 RPL Control Messages

After understanding the structure of a LLN, we need to

understand how the communication occurs within an RPL

Instance. This is made possible by RPL control messages [11]

which are a new ICMPv6 message. ICMPv6 messages were

originally specified in RFC 4443 [13].

The three main control messages that pertain to our imple-

mentation are DODAG Information Object (DIO), DODAG

Information Solicitation (DIS), and Destination Advertisement

Object (DAO). A DIO control message carries information that

allows an RPL node to discover a RPL Instance, learn the

Instances configuration parameters, select a DODAG parent

set, and maintain the DODAG. These messages are constantly

being sent from RPL nodes at a code specified minimum

interval. For more information on changing the interval refer

to rpl-conf.h, which defines a variable RPL DIO INTERVAL

to default 12. Where n = 12 and the minimum interval is

defined as 2n milliseconds, so, 212 ms is 4.096 seconds. We

mention this here because DIOs are the most common control

message and in section 6, we mention the results of changing

the RPL DIO INTERVAL value to increase DIO packets.

The second control message, DIS, is used to solicit a

DODAG Information Object from an RPL node. A DIS is

analogous to a Router Solicitation in IPv6 Neighbor Discovery,

a node may use DIS to probe its neighborhood for nearby

DODAGs. In the analysis section, we will discuss the necessity

of a DIO/DAO pair of messages to maintain and establish a

global route.

The final control message, DAO, is used to propagate desti-

nation information upward along the DODAG and establish

downward routes towards the DAG root. This message is

essential for route addition into the DAG root’s route table.

Summarizing the workings of RPL control messages, some

nodes are configured as a DAG root with associated DODAG

configurations. Nodes advertise initial presence by first send-

ing a DIS message which is responded to by DIOs of

neighboring nodes. The nodes are constantly listening for and

transmitting DIOs and use the incoming DIOs information to

join new DODAGs. Once a node joins a DODAG, it needs a

DAO to determine and establish itself in the DAG root

III. 6LOWPAN DESIGN

A. Typical Design

Typical 6LoWPAN network designs include a border router

actively monitoring and responding with no duty cycle. This

border router is usually attached to an exterior power source

and/or greater processing power such as a laptop. This larger

processing power has the capability to connect to the global

International Conference on Information Society (i-Society 2014)

978-1-908320-38/4/$25.00©2014 IEEE 223

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 19:07:05 UTC from IEEE Xplore. Restrictions apply.

Internet and uses the USB connected mote to bridge the global

Internet with the 6LoWPAN network. A series of motes then

connects to the border router and use the 802.15.4 protocol to

establish communication across a local 6LoWPAN network.

B. Test Bed Design

Our implementation was initially designed by Sherburne et

al [14] and utilized wireless sensor motes. Our current test bed

design, see Figure 1, extends this original design by adding a

wireless sniffer mote to analyze 6LoWPAN traffic.

Fig. 1. 6LoWPAN Test Bed Design

There are two options for implementing MT6D on a wire-

less sensor network. The first option requires MT6D operating

on the border router because the border router is the only

gateway that a 6LoWPAN mote has to the Internet. The first

option offers a simpler design because our border router runs

on a Raspberry Pi and MT6D has been shown to run on a

non-embedded Linux platform. Our second option implements

MT6D as originally intended, on end-to- end communication

points. We selected option two because we recognize that

in an enterprise network or the proposed Smart Grid ideas

[15], control of the border router is not always guaranteed

and MT6D on the 6LoWPAN mote ensures that an attacker

cannot effectively sniff the IPv6 traffic to the mote. In our

test bed design, we implement a sniffer to analyze network

activity.

1) Hardware and Network Design: The 6LoWPAN low-

power wireless sensors for this design are the Tmote Sky

motes [16]. Although relatively under-powered with a 8 MHz

TI MSP430 microcontroller, 10kB of RAM, 48kB of ROM,

and a TI CC2420 IEEE 802.15.4 compliant radio, it serves

as a resource-constrained environment in which to validate

the efficacy of dynamic address changing in 6LoWPAN. We

established one Tmote Sky as an RPL Border Router, one

Tmote Sky running a udp-echo-server, and one Tmote Sky

running as a network sniffer interface for Foren6 [17], a

program used to analyze 6LoWPAN traffic. We used version

2.7 of Contiki OS on the Tmote Sky running RPL Border

Router and another Sky running UDP Echo Server.

2) RPL Border Router: We utilized the same RPL Border

Router setup as in Sherburne et al [14] with a Raspberry Pi

and Tmote Sky.

3) UDP Echo Server: Our second Tmote Sky runs with

the Contiki example program udp-echo-server. This program

allowed us to establish minimal code overhead and simulate

basic traffic over IPv6 to the Tmote Sky and other platforms

capable of UDP communications. Upon boot-up, these Tmote

Skys attach a portion of their MAC address to the IPv6 prefix

to form their Global-Link address. This method has security

concerns because an attacker could find out the MAC address

of a device and try to correlate that with the Global-Link

address. This provides yet another motivation to change IPv6

addresses to protect against IP address to physical device

correlation.

4) Network Sniffer: Our third Tmote Sky runs a Contiki

sniffer [18] example that combined with a program called

Foren6 [17] is able to passively capture 6LoWPAN traffic and

render the network state in a graphical user interface. Both

Foren6 and the Contiki sniffer [18] example are developed

by the Center of Excellence in Information Technology and

Communication (CETIC), a Belgian ICT applied research

center that provides expertise in embedded, cloud and ser-

vice oriented technologies, and the code can be found on

CETICs github page. We use the TMote Sky sniffer as an

interface to Foren6 which provides us with event data that

can be further broken into packet data and further is read and

graphically displayed as nodes with arrows associating their

parents/neighbors.

IV. CONTIKI OS INITIAL SETUP

Now that we have a notion of the different protocols and the

Rime stack used in Contiki OS, we describe how the Contiki

OS performs initial setup and address configuration. We are

describing the initial setup so that the solution, described in

section 5, will be validated with respect to ordering and setting

of global variables. Each of the conversions and addresses

that are used in the initial setup have to be replicated in our

implementation to ensure that all structures and addresses are

changed to the new address.

The code in contiki-sky-main.c starts by applying a con-

version to a global array labeled ds2411 id. The conversion

changes the 802.15.4 MAC address into a compatible EUI-

64 bit address [19]. This variable is the base of all addresses

created. Upon initialization ds2411 id contains a unique value

that derives from the hardware specifications including family,

type, and node id. The ds2411 id is a unique identifier that

is used as the MAC address of the node. It is important to

note that we opted not to change the ds2411 id data structure,

as we felt that a Layer 7 application should not be changing

hardware specific unique identifiers.

Shortly after the ds2411 id conversion is performed;

set rime addr(), a local method, performs a memcopy

of the ds2411 id and finalizes the Rime address using

rimeaddr set node addr(&addr). As mentioned before, the

Rime stack provides a specialized network stack when the

full IPv6 stack is too large. This is the first method that

relies on the ds2411 id, and although we are not modifying

the ds2411 id directly, we need to ensure that the address,

which we create dynamically, meets the required Ethernet

MAC address specification.

The next part is the cc2420 init() local method. This method

initializes the CC2420 radio onboard the TMote Sky platform.

International Conference on Information Society (i-Society 2014)

978-1-908320-38/4/$25.00©2014 IEEE 224

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 19:07:05 UTC from IEEE Xplore. Restrictions apply.

The method sets the radios PAN (Personal Area Network)

address to the Rime address which is set immediately before

this method that is derived from the ds2411 id. This step is

included because the CC2420 radio acknowledges all inbound

packets’ destination addresses via cross-checking its PAN

address with the destination of the packet. There is a way to

put the radio into promiscuous mode and accept all incoming

traffic but this is not useful for our implementation as this

would break the security we wish to obtain through MT6D.

The setup continues onto another memcopy of the

ds2411 id into the global variable: uip lladdr.addr. The

uip lladdr.addr variable is the link local address that all of

the IP stack will use during execution. On a side note, all

link local IPv6 addresses on the TMote Sky platform running

Contiki OS, begin with the address fe80. As we mentioned

before, we are not changing the ds2411 id, instead we will

use this initialization information to create an implementation

that mimics this behavior and dynamically changes the address

via a timer.

The final part in the setup is the most crucial and under

documented section of the code, and it provides the backbone

of our implementation detailed in the next section. To begin,

once we have set the Rime address, uip lladdr.addr, and

the CC2420 radio PAN address, the TMote Sky completes

initialization of other systems such as the temperature sensors

and onboard LEDs. However, the code does not explicitly note

that there is a global array called uip ds6 if, with a default

size of 3, which stores the addresses which are used as the

global and link local address. Upon initialization of the above

addresses, the uip lladdr.addr is added to this array as a link

local address. This address is used as the source of the first

DIS control message which is sent upon initialization of the

TMote Sky node. As mentioned before the RPL node will

now receive a DIO control message from neighboring nodes

containing information about the surrounding DODAG as well

as the prefix to which a global address can be created. The

node now adds this prefix to a global array of prefixes, and

then uses the newly obtained prefix to create a full global

address by combining the prefix with its link local address that

it derived from the IP link local address. The node finally adds

this global address into the global list of addresses: uip ds6 if.

At this point the node has now established two addresses in the

global address array, both a link local and its global equivalent,

complete with prefix from the DIO control message.

V. IMPLEMENTATION

We have detailed the initialization of the global address in

the previous section. Our goal now is to replicate this behavior

in a single application layer method that can accept an IPv6

address as a parameter and set the nodes global address to the

input address. We should note that our implementation has

worked in the testing that we have performed, however, this

implementation should only be used as a proof of concept and

surely has room for improvement.

We demonstrate a simplified dynamic address change by in-

crementing the last octet of the global IPv6 address by 1 every

1-10 seconds. We then proceed to call our method which sets

the global address to this new value. Our method takes, as a

parameter, the lower 64 bits of an IPv6 address, via eight 8-bit

unsigned integers, and we have hardcoded the address prefix

for use in the global address. The hardcoded prefix does not

seem far from the final implementation as it is not uncommon

to specify a subnet in a configuration file. Also note that MT6D

uses these lower 64 bits to obfuscate and create a new address.

Our first part of the implementation includes the conversion

to make the address Ethernet compliant. We bitwise XOR bits

40-47 with 0xfe which performs the conversion and flips the

7th bit to 1 to be Ethernet compliant.

We then remove the old local and global addresses from

the global array mentioned in the previous section that stores

the addresses for the node. In an effort to save code on the

embedded system, we explicitly modify the global array which

stores the addresses for the node and mark the addresses as

not used, replicating the behavior of uip ds6 addr rm. These

array positions will be overwritten upon a following add into

the array. We noted that if the addresses are not explicitly

removed, adding into the global array will fail rather than

overwrite, and the address will not be added.

Now that we have ensured that the incoming address is

Ethernet compliant and have established free space for the new

address, we can begin to add a new address into the uip net if

list and set the global variables mentioned in the previous sec-

tion. To add the addresses, we must first create a uip ipaddr t

struct for both the local and global addresses and then initialize

them using uip ip6addr u8() method which takes as a param-

eter: a 128-bit number broken into sixteen 8-bit numbers. We

then use uip ds6 addr add(), this takes as parameters: the IP

address, lifetime, and address type. We have the lifetime set at

0, which implies that the address lifetime is infinite. In a future

implemention of MT6D on a Tmote Sky we may set these

lifetimes to a specified interval. We have experimented slightly

with the address type, which can be ADDR MANUAL,

ADDR TENTATIVE, or ADDR PREFERRED, and have de-

cided to use ADDR PREFERRED as this is the type that is

used upon initial setup of an address and also provides more

precedence when performing duplicate address detection.

Now that we have successfully removed an old address and

added a new address, we need to perform the bookkeeping

of global variables mentioned in the Contiki setup section

above. We have to set the Rime address, CC2420 PAN address,

and global uip lladdr.addr. This ensures that any address that

will be used throughout the messaging and stack protocols

will be updated to the new address. We first create a 64-

bit Rime address struct rimeaddr t named addr and set its

values by accessing the address as an 8-bit array to perform

these address changes. This is accomplished by accessing the

rimeaddr as addr.u8[i] where i is the index, from 0-7, to change

this dynamic Rime address to the new address.

Similar to the contiki-sky-main.c setup we are able to set

the Rime address using rimeaddr set node addr(). We set the

CC2420 PAN address by copying the newly set Rime address

and using cc2420 set pan addr. In our last bookkeeping of

International Conference on Information Society (i-Society 2014)

978-1-908320-38/4/$25.00©2014 IEEE 225

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 19:07:05 UTC from IEEE Xplore. Restrictions apply.

global variables the uip lladdr.addr is setup by again copying

the newly set Rime address into this structure using memcopy.

Our final, critical section, is sending a DIS, a DIO, and

a DAO. The DIS control message destination is the multicast

address ff02::1a. As described before, this will begin the cycle

of control messages that will eventually add the new address

as a globally addressable route to the border router.

In order to send a DIO and DAO message we must use

dio output() and dao output() respectively, but these methods

both take an RPL Instance as a parameter. Our implementation

loops over the global instance table and sends a DIO and DAO

to each of the RPL Instances. In our test bed design, our node

is only associated with one RPL Instance and so this loop is

only executing once for our base case.

To summarize our implementation: 1. Perform conversion

on new address to ensure Ethernet compliant. 2. Remove old

link local and global address from uip net if list. 3. Add new

local and global address to uip net if list. 4. Set Rime address

5. Set CC2420 address 6. Set global uip lladdr address used

in μIP stack. 7. Send a DIS, DIO, and DAO control message.

VI. ANALYSIS

Using our test bed design we were able to capture live traffic

with Foren6. This data provided most of our analysis coupled

with the web server running on the border router which

displays an HTML page. The HTML page details the border

routers neighbor table and route table. Using the displayed

routes, a user is able to access each specific route in a browser

which provides a new HTML page that displays readings from

the temperature sensor.

The goal of this paper is to prove that dynamic address

changes can occur in Contiki OS; however, the goal of our

experimentation is to find the address change time interval on a

mote to which the border router is able to achieve a near 100%

route addition success rate. This experiment is also crucial for

our future work with MT6D on an embedded device.

In order to create data points for measuring the amount of

addresses that are properly added into the border router, we

first found in the Contiki OS source code that a mote stores

many tables including a neighbor table and a route table. We

implemented a method that would print when a node was

added to the neighbor table of the border router and print

again when the same node was added to the border routers

route table. We kept a running total of both the neighbor

table and the route table which tracked the total neighbors

and total routes that were added. This way we were able to

quantify the total number of address changes and total number

of sucessful address changes, and furthermore maintain a list

of the addresses that were successful. We define a successful

address change as an address that has a route established in

the border router.

Once we established that we would use Foren6 to capture

live data and the border router printf to establish which routes

were successful, we saved both of these outputs in log files

and began experiments.

Our experiment consisted of changing addresses at a set

interval. This interval was changed from 1 to 10 seconds in

1 second increments and at each time interval, we ran the

experiment 10 iterations, for a total of 100 tests. In each test

we wanted 100 successful address changes but we collected

125 successful changes. We chose 125 address changes for two

reasons. First, the border router has a maximum table size of

20, due to memory size constraints, after the maximum size;

a replacement policy is in place and we want all addresses

to be added under replacement policy to ensure that time for

adding is the same and to closely resemble an enterprise border

router with rotating route tables. Our second reason for 125

addresses is an additional 5 address changes to account for

any errors. The data now becomes 100 successful address

changes with 125 total successful address changes collected

minus 20 (the first 20 dropped because they are added with

without replacement policy) minus 5 (inconsistent errors) =

100 successful address changes.
We found that there are addresses added to the router’s

neighbor table which are not always added to the router’s

route table. We also found a slight inconsistency of number

of addresses added to the neighbor table. For this reason we

created a ratio using the Foren6 data, we use the total address

changes witnessed by Foren6 and the total successful routes

(100 in all tests) and create a ratio to determine success rate

of each interval for changing addresses. In Figure 2 we show

a graph of the 100 tests with success rate vs address change

interval.

Fig. 2. Route Addition Success Rate

At a 10 second address change interval, a 100 percent route

addition success rate was achieved. This means that a DAO

frame was sent for every address change and that frame was

also received by the border router and a route established.

This can be explained by the time delay between when a DIS

frame, which initiates the address change, is sent to when the

DAO frame is sent which advertises the global link address

to the border router. This delay was observed as high as 9.80

seconds.
We found that rpl-timers.c within Contiki OS con-

trolled dao output() by a random timer in order to reduce

the probability that any two nodes will transmit a DAO

packet at the same time. In Figure 2, the data labeled

International Conference on Information Society (i-Society 2014)

978-1-908320-38/4/$25.00©2014 IEEE 226

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 19:07:05 UTC from IEEE Xplore. Restrictions apply.

”DAO unchanged RPL random timer” displays our test re-

sults after executing with the native random timer in Contiki

OS.

In order to fully implement MT6D, we must be able to

advertise the next address to the border router as quickly as

possible to still allow time for sensor data to be sent within

that address interval. We had to manually call dao output()

and disable the time process in rpl-timers.c thus adapting the

RPL protocol in order to allow rapid transmission of control

messages. With this change, we were able to transmit the DAO

packet immediately after the DIS. We found the Tmote Sky

running as the border router was not able to fully process

the incoming DIS and DAO packets fast enough. A 0.30

second delay was added between transmission of the DIS and

DAO packets. Following these changes, we repeated the same

experimental setup as discussed before and achieved between

99% and 100% route addition success rates. The experiment

data illustrating our manual changes is represented in Figure

2 by ”DAO manually set RPL timer.”

VII. FUTURE WORK

We will continue to implement MT6D within Contiki OS

by adding the Secure Hashing Algorithm (SHA) library in

order to build randomized addresses. The code implementation

presented consists of 45.27 KB that includes, the base Contiki

OS, the base UDP echo server and dynamic address changing

applications. This is almost at the Tmote Sky’s maximum

memory size of 48 KB. In order to move past the memory

constraints of the Tmote Sky, we will continue our research

with another platform, the Econotag II [20], which provides

96KB of RAM.

VIII. CONCLUSION

We have shown that we can successfully change the MAC,

Link-local and Global-link addresses of a wireless sensor at

regular intervals as quickly as 1 second with a 99% route

addition success rate at the border router. This method of dy-

namically changing addresses within 6LoWPAN provides an

initial foundation on the efficacy of MT6D being implemented

within wireless sensor networks.

We have presented that there is a need for applying a

moving target defense to wireless sensors with IPv6 addresses

in the Internet of Things in order to establish end-to-end

security. Sensor data, no matter how inconsequential, can

provide an attacker with critical information when aggregated

over time or with data observed from multiple sensors. We

showed in Section 4 how Contiki OS traditionally establishes

addressing on a Tmote Sky. In Section 5 we described how

we implemented dynamic address changes within Contiki OS

on a Tmote Sky and then analyzed the results of successful

address route additions in the border router in Section 6. This

analysis concludes that we have a foundation in which we can

implement the rest of the MT6D protocol including hashing

addresses and establishing an encrypted tunnel.

REFERENCES

[1] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and
flexible operating system for tiny networked sensors,” in Local Computer
Networks, 2004. 29th Annual IEEE International Conference on. IEEE,
2004, pp. 455–462.

[2] T. Alliance. (2012) TinyOS 2.1.2. [Online]. Available:
hhttp://www.tinyos.net/ [Accessed: 2014-06-01]

[3] D. s.r.l. (2011) BertOS 2.7.0. [Online]. Available: http://www.bertos.org/
[Accessed: 2014-06-01]

[4] SymbiosiS. (2014) SymbOS 2.1. [Online]. Available:
http://www.symbos.de/ [Accessed: 2014-06-01]

[5] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification,” RFC 2460 (Draft Standard), Internet Engineering
Task Force, Dec. 1998, updated by RFCs 5095, 5722, 5871,
6437, 6564, 6935, 6946, 7045, 7112. [Online]. Available:
http://www.ietf.org/rfc/rfc2460.txt

[6] M. Dunlop, S. Groat, W. Urbanski, R. Marchany, and J. Tront, “Mt6d:
A moving target ipv6 defense,” in MILITARY COMMUNICATIONS
CONFERENCE, 2011-MILCOM 2011. IEEE, 2011, pp. 1321–1326.

[7] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6
over Low-Power Wireless Personal Area Networks (6LoWPANs):
Overview, Assumptions, Problem Statement, and Goals,” RFC 4919
(Informational), Internet Engineering Task Force, Aug. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc4919.txt

[8] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission
of IPv6 Packets over IEEE 802.15.4 Networks,” RFC 4944 (Proposed
Standard), Internet Engineering Task Force, Sep. 2007, updated by RFCs
6282, 6775. [Online]. Available: http://www.ietf.org/rfc/rfc4944.txt

[9] J. Hui and P. Thubert, “Compression Format for IPv6 Datagrams
over IEEE 802.15.4-Based Networks,” RFC 6282 (Proposed Standard),
Internet Engineering Task Force, Sep. 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6282.txt

[10] Z. Shelby, S. Chakrabarti, E. Nordmark, and C. Bormann, “Neighbor
Discovery Optimization for IPv6 over Low-Power Wireless Personal
Area Networks (6LoWPANs),” RFC 6775 (Proposed Standard),
Internet Engineering Task Force, Nov. 2012. [Online]. Available:
http://www.ietf.org/rfc/rfc6775.txt

[11] A. Dunkels, “Rime-a lightweight layered communication stack for
sensor networks.” 2007.

[12] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks,” RFC 6550 (Proposed Standard),
Internet Engineering Task Force, Mar. 2012. [Online]. Available:
http://www.ietf.org/rfc/rfc6550.txt

[13] A. Conta, S. Deering, and M. Gupta, “Internet Control Message
Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
Specification,” RFC 4443 (Draft Standard), Internet Engineering
Task Force, Mar. 2006, updated by RFC 4884. [Online]. Available:
http://www.ietf.org/rfc/rfc4443.txt

[14] M. Sherburne, R. Marchany, and J. Tront, “Implementing moving target
ipv6 defense to secure 6lowpan in the internet of things and smart
grid,” in Proceedings of the 9th Annual Cyber and Information Security
Research Conference. ACM, 2014, pp. 37–40.

[15] S. Groat, M. Dunlop, W. Urbanksi, R. Marchany, and J. Tront, “Using
an ipv6 moving target defense to protect the smart grid,” in Innovative
Smart Grid Technologies (ISGT), 2012 IEEE PES. IEEE, 2012, pp.
1–7.

[16] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power
wireless research,” in Information Processing in Sensor Networks, 2005.
IPSN 2005. Fourth International Symposium on. IEEE, 2005, pp. 364–
369.

[17] S. Dawans and L. Deru. (2011) Troubleshooting with Foren6. [Online].
Available: https://github.com/cetic/foren6 [Accessed: 2014-06-01]

[18] S. Dawans. (2013) Sniffer 15.4. [Online]. Available:
https://github.com/cetic/contiki/tree/sniffer/examples/sniffer [Accessed:
2014-06-01]

[19] R. Hinden and S. Deering, “IP Version 6 Addressing Architecture,”
RFC 4291 (Draft Standard), Internet Engineering Task Force, Feb.
2006, updated by RFCs 5952, 6052, 7136, 7346, 7371. [Online].
Available: http://www.ietf.org/rfc/rfc4291.txt

[20] Redwire. (2014) Econotag II. [Online]. Available:
http://redwire.myshopify.com/products/econotag-ii [Accessed: 2014-06-
01]

International Conference on Information Society (i-Society 2014)

978-1-908320-38/4/$25.00©2014 IEEE 227

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 19:07:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

