
2005 International Conference on Wireless Networks, Communications and Mobile Computing

Chained Puzzles: A Novel Framework for IP-Layer Client Puzzles

Timothy J. McNevin*, Jung-Min Park*, and Randy Marchanyt
*Advanced Research in Information Assurance and Security (ARIAS) Laboratory

Bradley Department ofElectrical and Computer Engineering
tVirginia Tech Information Technology Security Office

Virginia Polytechnic Institute and State University
ftmcnevin, jungmin, marchany)@vt.edu

Abstract

Large-scale, high-profile Distributed Denial-ofService
(DDoS) attacks have become common recurring events that
increasingly threaten the proper functioning and continual
success ofthe Internet. Recently, clientpuzzleprotocols have been
proposed as a mitigation technique for DoS attacks. These
protocols require a client to solve a cryptographic puzzle"
before it receives any servicefrom a remote server. By embedding
the client puzzle mechanism into the lowest layer ofthe Internet
protocol stack that is vublerable against network DoS attacks-
the network layer-we can mitigate the mostvirulentfonn ofDoS
attacks: flooding-based DDoS attacks. This paper describes the
framework ofa novel IP-layer clientpuzzle protocol that we call
Chained Puzzles. We describe theframework in detail and show
its effectiveness using simulation results

1. Introduction

The frequency and scale of Denial-of-Service (DoS) attacks
have steadily increased and now pose a considerable theat to the
proper fincdoning and continual success of the Intemet In
particular, large-scale Distrbuted DoS (DDoS) attacks pose the
greatest treat to the intenet and e-businesses that rely on the
availability ofthe Intemet These attacks flood a victim server or
network with a large number of packets, thus bringing down the
server or rendering it unreachable by legitimate clients. A DDoS
attack typically consists of an attacker (or mltiple attackers),
severl handler computers, and mny attack zombies. During the
DDoS setup phase, the attacker(s) infiltrate dtird-party machines
in order to convert them into handlers or zombies. To initiate the
attack, the attackers notify the handlers to invoke the zombies to
begin flooding the victim with large amounts ofuseless data. Due
to the large volume and high rte of traffic, this attack is
commonly referred to as aflccding attack. The primary goal of
the attack is to incapacitate the victim, and the secondary goal is to
consume bandwidth and procesing resources ofthe intermediate
routers. It is very difficult to apply packet filtering schemes to

mitigate a well-planned DDoS attack because it is virtually
impossible to distinguish between legtimate traffic and attack
trffic. Although ingress filtering [1] has been successful at
combating attackers from using zombies with spoofed source IP
addresses, the current trend ofDDoS attacks indicates that more
must be done to counter these attacks.

DDoS attacks are difficult to defend against because they do
not exploit the vulnerabilities of a particular system or protocol.
Instead, they exploit the fundamental service paradigm of the
Intemet: it takes more resources for routers and servers to process
received packets than for clients to send those packets. Client
puzzles change this paradign: enable those providing service to
push load back onto those requesting service.

To effectively counterDDoS attacks, one must understnd that
the location in which the countemeasure is placed is crucial to its
effectiveness. As noted by Chang [2], the flow ofpackets caused
by a DDoS attack resembles water passing through a "funel":
attack packets generted from a large number of sources are
generated atthe wide end ofthe fimnel, and the victim is located at
the narrow end, receiving all the attack packets coming from the
wide end. It is obvious that DDoS attacks can be most readily
detected at the victim network since all attack packets can be
observed there. For mitigation, the opposite is tiue. It is most
effective to filter or rate limit attack packets as close to the attack
source (the zombie) as possible.

I this paper, we propose a novel network-layer client-puzzle
protocol that we call Chained Puzzles (CP). CP effectively
mitigates large-scale DDoS attacks by using a client puzzle
mechanism at the IP layer. A client puzzle is a cryptographic or
computational problemthat a server presents to a client (legitimate
or not) before the server provides services. Clients solve the
puzzle by using a brte-force strategy that requires both time and
computational resources. When a client attempts to send a large
number of packets towards a victim (as in a flooding attack), it
will be forced to solve a corrspondingy large nuiber ofpuzzles.

Integrating a puzzle protocol with IP poses several difficult
challenges. A client puzzle protocol is a connection-oriented
protocol that requires a hree-way handshake between a puzzle
solver (i.e., client) and a puzzle generator/verifier (i.e., "'puzzle

0-7803-9305-8/05/$20.00 ©2005 IEEE 298

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:11 UTC from IEEE Xplore. Restrictions apply.

server"). Because IP is an inherently connectionless protocol
integrating the two protocols is a challenging task.

The main contribution of this paper is the proposal of a novel
IP-layer client puzzle protocol, Chained Puzzles. CP has several
advantageous featue, including: (1) seamless integration of the
puzzle handshake procedu with IP by using "chained' puzzle
solutions, (2) inclusion of security easures to thwart protocol
circumvention, (3) use of a novel puzle algonithm based on a
lightweight block cipher that enables a puzzle server to rapidly
verify puzzle solutions at or near line speed, and (4) rate limiting
ofattack packets at the earliest entry point into the network.

2. Related Work

Client puzzles have been proposed previously in the literaure
to combat DoS attacks [3, 4, 5, 6, 7, 8, 9, 10, 11]. The basic idea
behind a client puzzle is to have a client prove its legitimcy by
devoting some its time and resources before a remote host will
perforn any action. Unlike other packet filtering schemes, client
puzzles is a technique that does not need to distinguish between
legitimte traffic and attack traffic. hnstead, client puzzles rate
limit all incoming traffic, including attack traffic, by requiring
each client to solve puzzles to receive service. Recently, client
puzzle schemes integrated into the IP layer have been proposed to
mitigate flooding attacks [9, 10].

Congestion Puzzles by Wang and Reiter [10] is a recently
proposed IP-layer puzzle scheme. When the puzzle mechanism is
activated, each client is require to solve puzles before their
packets are forwarded by a congested router. Clients continuously
send separate probe packets along with regular data packets.
When a router downslteam detects congestion, it relays the probe
packets toward the destination by changing the ICNMP code
number to resemble a ping when it reaches the victim This packet
will be modified to contain the puzzle information (i.e., a nonce
and the difficulty level). When a client receives the challenge, it
begins to continuously solve puzzles and embeds the solutions in
separate ICMP packets. The client takes the nonce it received
from the router, creates its own nonce and uses both ofthose items
to create the puzzle. Therefore, the client does not need to contact
the congested router to get a new puzzle. The client sends the
solutions, embedded in ICMP packets, towards the destination
which are later intercepted by the router for puzzle verificatioL
After conrect verification of the puzzles, tokens are added into a
token bucket at the congested router. When a data packet arrives,
tokens are removed fiom the bucket. While each client is sending
data packets and puzle solution packets, it is also concurrmtly
sending probe packets so it can receive new puzle information.
The major drawback ofCongestion Puzzles is that an attacker can
exploit the token bucket design by flooding the network with
packets (without solving puzzles) in the hopes that ftiis action will
remove tokens that were suplied earlierby legitimate clients. The
authors are aware of this problem and call it the 'free-ridini'
problem. The authors attmpt to fix this problem by introducing
an IP-caching algorithm iat allocates a separate token bucket for
clients that are sending more data than others or for those with a

conmon IP prefix. However, this adds much complexity to their
scheme and significantly increases tie memory storage overhead
at the router.

The protocol presented by Feng et al., called NetworkPuzzles
[9], requires a client and a congested router to constantly exchange
puzzle informaion for each puzzle. Unlike Congestion Puzzles,
each client can solve a puzzle only when it has been presented
with the puzzle information fromthe congested router. The major
drawback of this scheme is that it requires constant interaction
between the client and the congested router (when puzzles are
actvated) which is impractical for most IP applications. A more
seamnless integration ofthe puzzle protocol into IP is needed.

3. Technical Challenges

hmplementing a puzle protocol at the IP layer is a difficult
problem that requires careful consideration of several technical
issues, including: seamless integmtion of the puzzl-handshake
procedure into IP, granularity of puzzle generation (e.g., per-
packet puzzles or per-flow puzzles), computation and storage
overhead imposed on the puzzle server, communication overhead,
and countering protocol circumvention.
A client puzzle protocol is a connection-onented protocol that

requires a three-way handshake between the puzzle solver (i.e.,
client) and the puzzle generator/verifier (i.e., "puzzle server" or
router in an IP-layer puzzle scheme). A client initiates the protocol
by sending the first service-request packet to a puzzle server, the
puzzle server responds by sending back a puzzle challenge; the
client responds by sending back the puzzle solution. Since a TCP
connection is established using a somewhat similar tiree-way
handshake, a puzzle protocol can be readily integrated with TCP.
Unfortuntely, the same is not true for IP. Unlike TCP, IP is an
inherently connectionless protocol that transfers each packet from
hop to hop until it reaches the destnation. Obviously, requiring a
client and router to perform a three-way handshake for every
puzzle is not practical. Thus, an ideal approach to integrating the
handshake procedure with IP is to enable each client to create its
own puzzles (with some initial input fiom the puzzle generator) so
that constant interaction with a puzzle generator is not needed. But
at the same time, puzzles need to be unpredictable so that a client
cannot pre-cowmpute solutions ahead oftime. Designing a protocol
that has both features is a challenging problem.

To a large extent, the method employed for handling puzzle
information (e.g., difficulty level, nonce, solution, etc.) detemines
the way the handshake procedure is integrted with IP.
Congestion Puzzles proposed by Wang and Reiter [10] uses a
two-channel approach: puzzle informtion and regular data are
kept in separate packets. By using the two-channel approach, they
were able to integrate a puzzle protocol within the IP layer without
requiring the client and router to engage in repeated hee-way
handshakes. However, their technique has a critical drawback. it
does not provide a secure way of assocating the puzzle solutions
with the clients that solved then. This drawback is the root cause
of the fiee-riding problem discussed in Section 2. Network
Puzzles proposed by Feng et al. [9] employs a single-channel

299

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:11 UTC from IEEE Xplore. Restrictions apply.

approach where the data and puzzle information are kept together
in one packet This approach does not suffer from tie free-riding
problem. Network Puzzles, however, does not integrte the
handshake proedure witi IP in a seamless way-it requires
constant interaction between the client and the router.

The proposed scheme, Chained Puzzles, uses the single-
channel approach to avoid the free-riding problem, yet it also
manages to integrate the puzzle handhake procere into IP
seamrlessly.

In an IP-layer client puzzle protocol, puzzle-apable routers
perform puzzle generation and verification. In order to avoid
negatively impacting the normal packet processing functions of
the routers and to deterpotential protocol exploits by attackers, it is
important for a puzzle protocol to minimize the storage ovehead
and computational load on each router. To deter possible
memory-exhaustion attacks, a puzzle protocol must not require a
router to store large volumes of puzzle-related state information.
An adversary may also attempt to exploit the puzzle protocol by
sending large volumes ofbogus solutions to a router so that it will
exhaust clock cycles in veifying those solutions. To deter such an
attack; the puzzle verification algorithm should be lightweight
enough for a router to execute at or close to line rate.

4. Chained Puzzles

4.1. The Client Puzzle Algorithm

In the midst of a DDoS attack the efficiency of the puzzle
algorithm is very important. The cost of verifying a puzzle
solution must be orders ofmagnitude cheaper thn solving one so
that minimal load is imposed on the routers. In other words, the
cost of verifying puzzle solutions should be cheap enough to be
done at or near line speed. For the puzzle algorithm, we propose a
block-cipher algoritfh that we caIlXTE46. It is an extemely fast
and lightweight algorithm that is a truncated version of the
extended Tiny Encryption Algorithn (XIEA) [12]. XTEA is a
Feistel routine that incorporates several rounds of S-boxes and
basic bit-wise operations with a unique key in every round. The
operations needed for the encryption and decryption routines
include logical operations such as a bit-wise AND, a bit-wise
XOR, and bit shifting; all ofwhich can be easily performed on a
router. Note that all existing puzzle algorithms are based on hash
functions. We employ XTEA6 for two reasons: (1) it is
considerably faster to execute han any known hash function and
(2) it consumies less program space (very few lines of code) hn
any hash function. In some ofour initial experiments with hash-
based puzles and XTEA6-based puzzles, we discovered that the
execution times forMD5 andXTEA6 were 31 microseconds and
4 microseconds, respectively. Since puzzle verification is
perfomred by executing the routine only once, an XTEA6 puzzle
is much more efficient forthe puzzle verifier.

XTEA6 includes three conmonents: plaintex ciphertext, and
key. The plaintext is a 64-bit nonce generated by the router or the
previous puzzle solution. The 128-bit key is composed ofthe 64-
bit puzzle solution, hash value of the client IP address, and hash

value of the destination IP address. Giveni a plaintext and the
puzzle difficulty level d, a client must solve for the most
significant 64 bits of the key that will produce a ciphertext in
which the most significant dbits are zero (the bit pattem ofthe rest
ofthe ciphertext is irrelevant). The difficulty level ofthe puzzle is
defined by the value of d. For a given puzzle, a client must
continuously execute the XTEA6 encryption algorithm using the
same plaintext and different rdom selections of the key
(changing only the 64 most sigrificant bits) until XTEA6
produces an appropriate ciphertext The verification process
simply involves executing XTEA6 once to verify that a particular
plaintext-key combination produces an appropriate ciphertext
The puzzle algorithn is illustrated in Figure 1.

128-bit Key
:32-bit Hash of 32-bit Hash of

64-bit Puzzle Solution client Server IP
Address 'Address

64-bit Plaintext 64-bit Ciphertext
64-bit Nonce or XTE 0 DDD:D- D; i'revi~~~ous-,O...0001DDDDDDDDOprevious6

solution Dfiutbifficulfy
Figure 1. The client puzzle

As the difficulty level of the puzle incases, the probabilit hat
an answer exists decreases. Using simulations, we were able to
verify that a puzzle solution exists with overwhelming probability
when the difficulty level is less than 20. According to our
simulation results, difficulty levels below 20 are sufficient to
throttle attack traffic in most instances.

4.2. An Overview of the Protocol

As stated earlier, DoS/DDoS mitigation is best perfonmed as
close to the source of the attack as possible to prevent a large
amount of packets from converging onto the victim [2].
Therefore, puzzles should be generated and verified at the edge
routs or border routers of an Intemnet Service Provider (ISP),
rather than in the core of the Intemet or at the routers close the
victim These routers are located closest to the source ofthe attack
and are the optimal locations to filter attack traffic. In our scheme,
we are requred to modify routers at each end ofthe network: the
border routers near the source ofthe attack (located upstream) and
the border routers near the victim of the attack (located
downstream). Thus, border routers will act as "puzle servers".
Throughout the remainder ofthis paper, these routers are referred
to as puzzle routers. Border routers near the victim of the attack
are simply designed to detect an ongoing attack, but can be used to
generate and verify puzzles if the source of a different attack is
witiin its own network Methods to detect an attack are critical,
but are beyond the scope of this paper. We assume that there
exists a basic detection mechanism already in place that can
determine if a flooding attack is underway. A puzzle router also
exists near the source of the attack; this router is responsible for
generating and verifying puzzles. Thus, there is a pair ofpuzzle
routers at each end ofthe path that connects a client and a server.
In order to handle puzzle generation and verification, the puzzle
routers near the source is required to store state information. The

300

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:11 UTC from IEEE Xplore. Restrictions apply.

puzzle router mai tain a Plaintext Table for each client's flow,
where each entry contain a 20-bit hash ofthe concatenated string
of the client and server IP addresses, and either the initial router
nonce, NR, or the client's previous puzzle solution (both 64 bits).
In addition, the puzle router also stores the level of difficulty for
the puzzles inthe 8-bit variable d. The clients all use NR (andd) for
the first puzzle, so initially the Plaintext Table is empty. After
corect verification ofthe first puzzle in a givenPlaintext Chain, a
correspondig entry is created in the Plamntext Table. Thus, before
the puzzle router stores state infomation, the client must first
solve one puzzle. This will help avoid attacks on the storage
capacity of the router. The Plaintext Chain is the sequence of
puzzle solutions that the client creates for eveiy puzzle with initial
input fromthe puzle router.

Because the number of clients that a typical puzzle router
handles is not exorbitant, the amount of puzle-related state
inforration that needs to be stored in each puzzle router is
reasonably small. For example, if each puzzle router serviced
10,000 clients with one flow each, then the size ofthe table would
be 105 KB, which is smal enough to be readily stored in the
memory ofany typical router. Existing IP-layer puzzle protocols
require a puzzle-capable router to store a greater amount of state
information. In [10], the authors use a Bloom filter stored witiin
the router to check for duplicate puzzle solutions from a large
number ofclients and estimate that the size ofthe filter would be
1.1 MB. To intruce our protocol, we have summarized the steps
taken by the client and puzzle router in the event of an attack in
Table 1.

Table 1. Overview of Chained Puzzles

Chained Puzzles allows the client to create a chain ofpuzzles
which enables the seamless integmtion of client puzzles into IP.
With the Plaintext Table, each client and puzzle router is
synchronized with the same plaintext value used in the next
puzzle, which is refered to as the Plaintext Chain Ifthe chain is
broken, problems can arise. This issue is discussed in detail in
Section4.5.

During the PTP, packets are not verified by a puzzle router.
Thus, this period must be kept to a muiniunm to avoid an attacker
from having a window of opotunity to flood the rest of the
networl The length of the PIP is essentially the minimum
amount oftime before the puzzle router will begin to see a puzzle
solution or a new chain ofpuzzle solutions from any client To
calculate the PTP, we need to include the time it takes for the

ICMP puzzle challenge packet to reach the client and the time it
takes for one packet from the client to reach the puzzle router.
Thus, this period should be slightly greater han the round-trip
time (RITT) between the client and the puzzle router.

If a client does not receive the ICMP Puzzle Challenge,
possibly because it was offine, it is possible for a client to query
the puzzle router to receive the current NR. This wil allow more
flexlbility forvarious types ofclients.

4.3. The Effectiveness of Chained Puzzles

A client puzzle at the IP layer is purposely designed to slow
down any potential attackers in the event ofan attack. In order to
determine how effectve Chained Puzles would be, we need to
first exarmne the behavior ofa typical attacker. We assume that
the attacker, or the zombie, will on average make a larger number

301

back to each client WbenNRordis updated, anew chain is
created and the router will wait until thePTP expires or until
it sees a new solution for the new chain represented by IP
Option 102.

Client:
1. If the client receives the Puzle Challenge Packet from the

puzzle router with the puzle infomiation for the first time, it
solves the puzzle usingihe initial router nonce, NR, and sends
its next packet with the puzzle solution embelded into the IP
options field ofthe header (IP Option 10 1).

2. For every new packet the client uses the current puzzle
solution as the plaitex for the next XTEA6 puzzle. The
client solves the puzzle and embeds the solution into the IP
header of the packet (IP Option 101). Doing so, the client
will create a chain ofpuzzles.

3. A client my receive a new Puzzle Challenge Packet with a
newNR or d. It resets thechai andin the next packet
supplies the next answer (IP Option 102). Eveiy following
packet has the IP Option 101 to indicate that a solution is
embedded and to indicate tit this packet is part of an
existing chain.

4. A client may also receive an ICMP message to stop solving
puzzles. Following tis message, the next packet is sent
without a solution.

Puzle Router
1. A puzzle router downshteam near the victim detects the

attack and sends anICMP Congestion Notification upstrn
to otherpuzzle routers, which enables Chained Puzles.

2. When puzzles are enabled, an ICMP Puzzle Challenge is
sent to each client with the initial router nonce, NR, and the
current difficulty level, d, in the IP options field. NR is the
same for every client and is refieshed periodically.

3. The puzzle router waits for the Puzzle Transitional Period
(PTP) to expire or untl it receives the first solution ([P
Option 102) before it will verify the first puzzle solution.
After puzle verification, f it is corect, an entry is added in
the Plaintext Table with tie current solution. Ifthe solution
is incorrect, the packet is dropped. Subsequent packets use
IP Option 101 to indicate that solutions are embedded and to
indicate that these packets are part of an existing chain
When verifyig solutions received from a given client, the
puzzle router uses the cunrent solution as the plaintext ofthe
next puzzle and so on.

4. Upstream puzzle routes may receive congesdon
notifications fiom downstream puzzle routers to increase the
cifficulty level or to disable puzzles. Difficulty levels are
updated by a new ICMP Puzle Challenge to each client. A
newNR value canbe distributed in the same fashion. Puzzles
can also be disabled by sending a different ICMP message

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:11 UTC from IEEE Xplore. Restrictions apply.

of reWests than any single legiiniate client In a client puzzle
protocoL the attacker has two realistic choices: to solve the puzle
or to supply a madom solution and hope tha it's correct An
attacker may alternte this behavior to create a more effective
attackl Thus, we can define a hybrid zonbie, which both solves
and guesses the puzzles. Suppose that Q rersents the prbability
that it solves a given puzzle. We can also define a unque attack,
called a Guessing Attack, where the attacker deploys hybrid
zombies scattered throughout the network that guess puzzle
solutons instead ofsolving them

When a zombie solves a puzzle per packet, its sending rate is
reduced by a factor S(kA d) defined in (1). Inthis equation, k is the
average time it takes for the puzzle solver to execute the XTEA6
encryption function once andd is the difficulty level ofthe current
puzzle. The fimction S(k1 d) is defined as the expected puzzle
solve time.

S(k,d)=k.2d (1)
Ifwe let tp be tie average processing time required to generate

a regular packet, we can define the worst-case sending rate of a
puzzle solver, r, using (2). In this equation, we assme that the
tie it takes to solve a puzzle will be much larger than the ime it
takes to generate a packet.

r= ll (2)
tp +S(k, d) S(k,d)

Thus, every puzzle solving client will have the sending
rate as defined in (2). Thus, an attacker's sending rate is
controlled by the difficulty level. Unfortunately, this
includes legitimate clients as well as the puzzle-solving
zombies. For a legitimate client that is sending less than
the rate defined in (2), the only difference it will notice is
an increase in CPU usage because of the puzzle
mechanism. If the zombie does not solve a puzzle and
supplies a random solution instead, its sending rate is not
reduced. The probability of the packet reaching
downstream depends solely on the difficulty of the
puzzle. The probability that a guessing attacker's packet
reaches the victim is given by (3).

PD = 2d (3)
Thus, when puzzles are enabled, the difficulty level needs to be
initialized to a value high enough that mini this probability
to combat the hybrid zombies.

4.4. Simulation Results

To determine how effective Chained Puzzles would be in the
event of a DDoS attack, we simulated a DDoS attack using the
Network Simulator (NS-2) [13]. We modified the simulator to
have a packet wait in a queue for a determined amount of time
(S(k, d) seconds) before the sender sent it to the vicfim Likewise,
the first router in the path of the packet delayed forwarding the
packet due to the puzzle verification (S(k, 0) seconds). In our
simulations, we created a tree network with 100 clients and 40
attackers. The attackers sent UDP packets at a rate 10 bmes
higher an the legitiate clients. Each client began sending data

at a randomly chosen time, while the attackers coordinated their
tansmnissions (i.e., sted sending packets at the same timne).
During the attack, we assumed that every legitimate client solved
puzzles.

In Figure 2, we show the Normal Packet Survival Ratio
(NPSR) [2]. NPSR is defined as the number oflegitimte packets
reaching the victim divided by the total number ofpackets sent by
the legitimate clients during a DDoS attack. When IP (with no
puzles) was used, the NPSR value was equal to 0.23, which
means that 77% of client packets were being dropped. In our
simulations with Chained Puzles (CP), we varied the value ofQ,
the probability that an attacker solves a given puzzle. We can
observe tha as the difficulty level increases, the NPSR value
mproves.

Puzzle Difficulty Le%el

Figure 2. NPSR during a DDoS attack

From Figure 2, it appears that a difficulty level of ten is
optimal to defend against the attack that was simulated. At this
level, there were very few packets being dropped and the client's
thrughput mained fairly high. As expected, at difficulty levels
higher than ten, clients' throughput dropped siguificantly. In fact,
the sending rate of each client dropped fiom roughly 31 packets
per second (with smandard IP) to 10 packets per second (with
puzzles on and a difficulty level of twelve). Therefore, there is a
tradeoffbetween theNPSR value and the client's sending rate.

In this expeint, clients used the expected puzzle solve time
when solving a puzzle. Ifthe solve time was less than that, then it
is likely that the NPSR would not reach one as quickly because
the sending rates of all clients and attackers would increase.
However, the NPSR would still reach one as the difficulty level
increased. During an attack, this difficulty level can be adjusted if
needed by the downstreampuzzle routers by adjusfing the number
of ICMP congestion notification packets hat they send to
upstreanpuzzle routers.

4.5. Security of Chained Puzzles

A DoS attack mitigation scheme is obsolete if the scheme
itself is vulnemble to attacks or if it can be ciumvented by an
attacker altogether. Here, we discuss possible attacks against
Chained Puzles and their countemeases.

302

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:11 UTC from IEEE Xplore. Restrictions apply.

hi our scheme, we rely on the puzzle routers downstream to be
able to detect congestion or packet loss and send the congestion
notifications upstream to the otherpuzzle routers. For our scheme
to work properly, tiese messages need to be authenticated. An
atacker could spoofa router's identity and send ICMP congestion
notification messages to several puzzle roters, causing clients to
solve puzzles when it is not necessary. Messages from puzzle
routers to their clients also need to be authenticated to prevent an
attacker from spoofing these messages. One way to do this is to
use the technique descnbed in [14]: when sending packets fiom a
puzzle router, set the TTL value to 255. Since the packet is
traveling from a first-hop router to a client, an attacker outside of
the network could not spoof iis message.

When puzzles are enabled, each client and puzle router are
synchronized with a plaintext value. Originally this value is NR,
but after the first puzzle is solved coctly, this value is the
previous solution provided by that client The router updates this
value (in the Plaintext Table) after forwarding each packet, and the
client updates this value after sending each packet Ifthe Plaintext
Chain is broken, the legitimate client could be denied access for its
subsequent packets, which causes another unique DoS attack. If
the difficulty level is low, an attacker could guess a puzLe solution
and spoof its IP address to a real client's address within the same
subnet and use that client's destintion IP address in its attack
packets. This would cause an incorrect plaintext value to be
inserted in the puzzle router's Plaintext Table. We call such an
attack a Spoofed Guessing Attack. This attack is similar to the
Guessing Attack mentioned in Section 4.3 except that it employs
intelligent IP spoofing (i.e. it knows the correct range of IP
addresses to spoof and the correct dsination IP address). One
way to combat this attack is to ensure that the difficulty level is
high enough to prevent an attacker from guessing correct puzzle
solutions of chains being tansmitted by legitimte clients. An
attacker can guess a puzzle solution with probability of 2"d. For
example, ifthe difficulty level was set to five, the probability ofan
attacker guessing a correct solution is 1/32.

When a Plaintext Chain has been broken, it will result in a
sequence of incorrect puzzles for that client. One staightforward
solution to this problem is to resynchronize that client with a new
NRby executing a handshake procedure between the client and a
puzzle router. An attacker may exploit this approach by spoofing
the IP address of the client and then send incorrect random
solutions at the puzzle router, causing continuous
resynchronizations between the client and the puzzle router. An
attack such as this would be just as effective as a flooding attack
because it would severely disrupt the flow ofpackets exchanged
between the client and the server. A resynchronization technique
that is robust against such attacks needs to be enployed.

The attacks descnrbed above are difficult to defend against.
Finding effective solutions for preventing protocol circumvention
is a challenging task that requires careful consideration of the
underlying architectue ofthe protocol itself.

5. Conclusions

I this paper, we have presented the famework of a novel
client puzzle protocol that seamlessly integrates the puzAle
handshake procedure with the IP layer. The integmtion was
canied out by chaining puzzle solutions. To prevent the
exploitation ofthe puzzle mechanisn itselfby attackers, we have
proposed a lightweight puzzle algorithm based on a block cipher
that enables a puzzle router to verify puzzle solutions at or near
line speed. Chained Puzes enables the network to rate limit
attack traffic at the entry point of the network (i.e., at the border
routers), which is the optimal place to mitigate aDDoS attack.

Scalability is an impontant issue with vitually all client puzzle
protocols. As part ofour future work, we intend to investigate the
scalability of Chained Puzzles and evaluate its effectiveness at
mitigating very large-scale DDoS flooding attacks.

6. References

[1] P. Frguson and D. Senie. RFC 2267 - Network Ingress Filteing
Defeating Dial of Service Attacks which employ IP Sore Address
Spoofing. January 1998.

[2] R K. C. Chang 'Defending against floong-baseddistnbuteddenial-
of-service attacks: a tutorial," in EEE Comnniicions Magazin.
Volume 40, Issuew 0. October2002. Pages42-51.

[3] A. Juels and J. Banard "Client Puzzles: A cryptographic defense
againt conntion deplefion attacks," in Proceedings ofNDSS '99
(Netwrks andDistibtedSystems Secuity), pages 151-165. 1999.

[4] T. Aura, P. Nler, and J. Leiwo. 'DoS-Resistant Authenticaton
wfith Client Pules," in Lecture Notes in ComputerScince, Volume
2133,2001.

[5] X. Wang and Mt K Reiter. 'Defending Against Denial-of-Svice
Attacks with Puzle Aucfions (Extended Abstc)," in Proceedings of
the 2003IEEESyqxosiwn on Seairty andPrivacy. 2003.

[6] B. Bencsath, 1. Vajda,ad L. Buttyan "AGame Based Analysis ofhie
Client Puzzle Apprach to Defend Agaist DoS Attacks," in
Proeedings ofSofiCOM2003. Intentional Conferenceon Software,
Telecommunwiitions and Computer Networks.

[7] D. Dean and A. Stuilefield "Using Client Puzzles to Protect TLS"
inProceedingsofthe Idh USENIXSecritySymposium August2001.

[8] B. Waters, J. A. Haldemnan, A. Juels, and E. W. Felten. 'New Client
Puzzle Outsouring Techniques for DoS Resistance," in Proceedings
of the 11th ACM Conference on Computer and Communations
Sewi,(CCS'04). October25-29,2004.

[9] W. Feng, E. Kaiser, W. Feng, A. Lul, 'The Design and
Inplementatio ofNetwork Puzzles," in Proceedings ofINFOCOM
2005, Marh 2005.

[10] X Wang and M. K. Reiter. 'Mitigating Bandwidth-Exhaustion
Attacks using Congestion Puzzles (Extended Abstrac)," in
Proceings of the 11i ACM Conference on Compuer and
Com mwiaonsecwiIy(CCS '04). ctobfe 25-29,2004.

[11] W.Feng. 'TheCaseforTCP/IPPuzles,"inProceedingsoftheACM
SIGCOMM2003 Workshops. August2003.

[12] D. Wheeler and R Ne an '"TEA Extnsions," Unpublished
Mmuscript Available at
httph/www.cl.camac.uk/flpisers/djw3/xtea.ps

[13] The network simulator - ns-2. Available at
http/wvww.isi.edu/nsamrns/

[14] J. loannidis and S. M Bellovm. Implementing Pushbackc Router-
Based Defense Against DDoS Attacks," in Proceedings ofNDSS'02
(Networks andDistrited Systems Security), Fbnk-ry 2002.

303

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:11 UTC from IEEE Xplore. Restrictions apply.

