2005 International Conference on Wireless Networks, Communications and Mobile Computing

Chained Puzzles: A Novel Framework for IP-Layer Client Puzzles

Timothy J. McNevin , Jung-Min Park’, and Randy Marchany'
Advanced Research in Informatzon Assurance and Security (ARIAS) Laboratory
Bradley Department of Electrical and Computer Engineering
Vzrgtma Tech Information Technology Security Office
Virginia Polytechnic Institute and State University
{tmcnevin, jungmin, marchany}@vt.edu

Abstract

Large-scale, high-profile Distributed Denial-of-Service
(DDoS) attacks have become common recurring events that
increasingly threaten the proper functioning and continual
success of the Internet. Recently, client puzzle protocols have been
proposed as a mitigation technique for DoS attacks. These
protocols require a client to solve a cryplographic “puzle”
before it receives any service from a remote server. By embedding
the client puzzle mechanism into the lowest layer of the Intermet
protocol stack that is vulnerable against network DoS attacks—
the network layer—we can mitigate the most virulent form of DoS
attacks: flooding-based DDoS attacks. This paper describes the
Jframework of a novel IP-layer client puzzle protocol that we call
Chained Puzzles. We describe the framework in detail and show
its effectiveness using simulation results

1. Introduction

The frequency and scale of Denial-of-Service (DoS) attacks
have steadily increased and now pose a considerable threat to the
proper functioning and continual success of the Internet. In
particular, large-scale Distributed DoS (DDoS) attacks pose the
greatest threat to the Internet and e-businesses that rely on the
availability of the Internet. These attacks flood a victim server or
network with a large number of packets, thus bringing down the
server or rendering it unreachable by legitimate clients. A DDoS
attack typically consists of an attacker (or multiple attackers),
several handler computers, and many attack zombies. During the
DDoS setup phase, the attacker(s) infiltrate third-party machines
in order to convert them into handlers or zombies. To initiate the
attack, the attackers notify the handlers to invoke the zombies to
begin flooding the victim with large amounts of useless data. Due
to the large volume and high rate of traffic, this attack is
commonly referred to as a flooding attack. The primary goal of
the attack is to incapacitate the victim, and the secondary goal is to
consume bandwidth and processing resources of the intermediate
routers. It is very difficult to apply packet filtering schemes to

0-7803-9305-8/05/$20.00 ©2005 IEEE

298

mitigate a well-planned DDoS attack because it is virtually
impossible to distinguish between legitimate traffic and attack
traffic. Although ingress filtering [1] has been successful at
combating attackers from using zombies with spoofed source IP
addresses, the current trend of DDoS attacks indicates that more
must be done to counter these attacks.

DDosS attacks are difficult to defend against because they do
not exploit the vulnerabilities of a particular system or protocol.
Instead, they exploit the fundamental service paradigm of the
Internet: it takes more resources for routers and servers to process
received packets than for clients to send those packets. Client
puzzles change this paradigm: enable those providing service to
push load back onto those requesting service.

To effectively counter DDoS attacks, one must understand that
the location in which the countermeasure is placed is crucial to its
effectiveness. As noted by Chang [2], the flow of packets caused
by a DDoS attack resembles water passing through a “funnel”
attack packets generated from a large number of sources are
generated at the wide end of the funnel, and the victim is located at
the narrow end, receiving all the attack packets coming from the
wide end. It is obvious that DDoS attacks can be most readily
detected at the victim network since all attack packets can be
observed there. For mitigation, the opposite is true. It is most
effective to filter or rate limit attack packets as close to the attack
source (the zombie) as possible.

In this paper, we propose a novel network-layer client-puzzle
protocol that we call Chained Puzles (CP). CP effectively
mitigates large-scale DDoS attacks by using a client puzzle
mechanism at the IP layer. A client puzzle is a cryptographic or
computational problem that a server presents to a client (legitimate
or not) before the server provides services. Clients solve the
puzzle by using a brute-force strategy that requires both time and
computational resources. When a client attempts to send a large
number of packets towards a victim (as in a flooding attack), it
will be forced to solve a correspondingly large number of puzzles.

Integrating a puzzle protocol with IP poses several difficult
challenges. A client puzzle protocol is a connection-oriented
protocol that requires a three-way handshake between a puzzle
solver (i.e., client) and a puzzle generator/verifier (i.e., “puzzle

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:11 UTC from IEEE Xplore. Restrictions apply.

server”). Because IP is an inherently connectionless protocol,
integrating the two protocols is a challenging task.

The main contribution of this paper is the proposal of a novel
IP-layer client puzzle protocol, Chained Puzzles. CP has several
advantageous features, including: (1) seamless integration of the
puzzle handshake procedure with IP by using “chained” puzzle
solutions, (2) inclusion of security measures to thwart protocol
circumvention, (3) use of a novel puzzle algorithm based on a
lightweight block cipher that enables a puzzle server to rapidly
verify puzzle solutions at or near line speed, and (4) rate limiting
of attack packets at the earliest entry point into the network.

2. Related Work

Client puzzles have been proposed previously in the literature
to combat DoS attacks [3,4, 5, 6,7, 8,9, 10, 11]. The basic idea
behind a client puzzle is to have a client prove its legitimacy by
devoting some its time and resources before a remote host will
perform any action. Unlike other packet filtering schemes, client
puzzles is a technique that does not need to distinguish between
legitimate traffic and attack traffic. Instead, client puzzles rate
limit @/l incoming traffic, including attack traffic, by requiring
each client to solve puzzles to receive service. Recently, client
puzzle schemes integrated into the IP layer have been proposed to
mitigate flooding attacks [9, 10].

Congestion Puzzles by Wang and Reiter [10] is a recently
proposed IP-layer puzzle scheme. When the puzzle mechanism is
activated, each client is required to solve puzzles before their
packets are forwarded by a congested router. Clients continuously
send separate probe packets along with regular data packets.
When a router downstream detects congestion, it relays the probe
packets toward the destination by changing the ICMP code
number to resemble a ping when it reaches the victim. This packet
will be modified to contain the puzzle information (i.e., a nonce
and the difficulty level). When a client receives the challenge, it
begins to continuously solve puzzles and embeds the solutions in
separate ICMP packets. The client takes the nonce it received
from the router, creates its own nonce and uses both of those items
to create the puzzle. Therefore, the client does not need to contact
the congested router to get a new puzzle. The client sends the
solutions, embedded in ICMP packets, towards the destination
which are later intercepted by the router for puzzle verification.
After correct verification of the puzzles, tokens are added into a
token bucket at the congested router. When a data packet arrives,
tokens are removed from the bucket. While each client is sending
data packets and puzzle solution packets, it is also concurrently
sending probe packets so it can receive new puzzle information.
The major drawback of Congestion Puzzles is that an attacker can
exploit the token bucket design by flooding the network with
packets (without solving puzzles) in the hopes that this action will
remove tokens that were supplied earlier by legitimate clients. The
authors are aware of this problem and call it the “free-riding”
problem. The authors attempt to fix this problem by introducing
an IP-caching algorithm that allocates a separate token bucket for
clients that are sending more data than others or for those with a

299

common IP prefix. However, this adds much complexity to their
scheme and significantly increases the memory storage overhead
at the router.

The protocol presented by Feng et al., called Network Puzzles
[9], requires a client and a congested router to constantly exchange
puzzle information for each puzzle. Unlike Congestion Puzzles,
each client can solve a puzzle only when it has been presented
with the puzzle information from the congested router. The major
drawback of this scheme is that it requires constant interaction
between the client and the congested router (when puzzles are
activated) which is impractical for most IP applications. A more
seamless integration of the puzzle protocol into IP is needed.

3. Technical Challenges

Implementing a puzzle protocol at the IP layer is a difficult
problem that requires careful consideration of several technical
issues, including: seamless integration of the puzzle-handshake
procedure into IP, granularity of puzzle generation (e.g., per-
packet puzzles or per-flow puzzles), computation and storage
overhead imposed on the puzzle server, communication overhead,
and countering protocol circumvention.

A client puzzle protocol is a connection-oriented protocol that
requires a three-way handshake between the puzzle solver (ie.,
client) and the puzzle generator/verifier (i.e., “puzzle server” or
router in an [P-layer puzzle scheme). A client initiates the protocol
by sending the first service-request packet to a puzzle server; the
puzzle server responds by sending back a puzzle challenge; the
client responds by sending back the puzzle solution. Since a TCP
connection is established using a somewhat similar three-way
handshake, a puzzle protocol can be readily integrated with TCP.
Unfortunately, the same is not true for IP. Unlike TCP, IP is an
inherently connectionless protocol that transfers each packet from
hop to hop until it reaches the destination. Obviously, requiring a
client and router to perform a three-way handshake for every
puzzle is not practical. Thus, an ideal approach to integrating the
handshake procedure with IP is to enable each client to create its
own puzzles (with some initial input from the puzzle generator) so
that constant interaction with a puzzle generator is not needed. But
at the same time, puzzles need to be unpredictable so that a client
cannot pre-compute solutions ahead of time. Designing a protocol
that has both features is a challenging problem.

To a large extent, the method employed for handling puzzle
information (e.g,, difficulty level, nonce, solution, etc.) determines
the way the handshake procedure is integrated with IP.
Congestion Puzzles proposed by Wang and Reiter [10] uses a
two-channel approach: puzzle information and regular data are
kept in separate packets. By using the two-channel approach, they
were able to integrate a puzzle protocol within the IP layer without
requiring the client and router to engage in repeated three-way
handshakes. However, their technique has a critical drawback: it
does not provide a secure way of associating the puzzle solutions
with the clients that solved them. This drawback is the root cause
of the free-riding problem discussed in Section 2. Network
Puzzles proposed by Feng et al. [9] employs a single-channel

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:11 UTC from IEEE Xplore. Restrictions apply.

approach where the data and puzzle information are kept together
in one packet. This approach does not suffer from the free-riding
problem. Network Puzzles, however, does not integrate the
handshake procedure with IP in a seamless way—it requires
constant interaction between the client and the router.

The proposed scheme, Chained Puzzles, uses the single-
channel approach to avoid the free-riding problem, yet it also
manages to integrate the puzzle handshake procedure into IP
seamlessly.

In an IP-layer client puzzle protocol, puzzle-capable routers
perform puzzle generation and verification. In order to avoid
negatively impacting the normal packet processing functions of
the routers and to deter potential protocol exploits by attackers, it is
important for a puzzle protocol to minimize the storage overhead
and computational load on each router. To deter possible
memory-exhaustion attacks, a puzzle protocol must not require a
router to store large volumes of puzzle-related state information.
An adversary may also attempt to exploit the puzzle protocol by
sending large volumes of bogus solutions to a router so that it will
exhaust clock cycles in verifying those solutions. To deter such an
attack, the puzzle verification algorithm should be lightweight
enough for a router to execute at or close to line rate.

4. Chained Puzzles

4.1. The Client Puzzle Algorithm

In the midst of a DDoS attack, the efficiency of the puzzle
algorithm is very important. The cost of verifying a puzzle
solution must be orders of magnitude cheaper than solving one so
that minimal load is imposed on the routers. In other words, the
cost of verifying puzzle solutions should be cheap enough to be
done at or near line speed. For the puzzle algorithm, we propose a
block-cipher algorthm that we call XTEA6. It is an extremely fast
and lightweight algorithm that is a truncated version of the
extended Tiny Encryption Algorithm (XTEA) [12]. XTEA is a
Feistel routine that incorporates several rounds of S-boxes and
basic bit-wise operations with a unique key in every round. The
operations needed for the encryption and decryption routines
include logical operations such as a bit-wise AND, a bit-wise
XOR, and bit shifting; all of which can be easily performed on a
router. Note that all existing puzzle algorithms are based on hash
functions. We employ XTEA6 for two reasons: (1) it is
considerably faster to execute than any known hash function and
(2) it consumes less program space (very few lines of code) than
any hash function. In some of our initial experiments with hash-
based puzzles and XTEA6-based puzzles, we discovered that the
execution times for MDS5 and XTEA6 were 31 microseconds and
4 microseconds, respectively. Since puzze verification is
performed by executing the routine only once, an XTEA6 puzzle
is much more efficient for the puzzle verifier.

XTEAG6 includes three components: plaintext, ciphertext, and
key. The plaintext is a 64-bit nonce generated by the router or the
previous puzzle solution. The 128-bit key is composed of the 64
bit puzzle solution, hash value of the client IP address, and hash

300

value of the destination IP address. Given a plaintext and the
puzze difficulty level d, a client must solve for the most
significant 64 bits of the key that will produce a ciphertext in
which the most significant d bits are zero (the bit pattern of the rest
of the ciphertext is irrelevant). The difficulty level of the puzzle is
defined by the value of d. For a given puzzle, a client must
contimiously execute the XTEA6 encryption algorithm using the
same plaintext and different random selections of the key
(changing only the 64 most significant bits) until XTEA6
produces an appropriate ciphertext. The verification process
simply involves executing XTEAG6 once to verify that a particular
plaintext-key combination produces an appropriate ciphertext.
The puzzle algorithm is illustrated in Figure 1.

128-bit Key
32-bit Hash of | 32-bit Hash of
64-bit Puzzle Solution Client IP Server IP
Address Address

64-bit Plaintext

64-bit Nonce or
Previous
Solution

64-bit Ciphertext
000...0001DDDDDDDDD
\ /
Difficulty

Figure 1. The client puzzle

As the difficulty level of the puzzle increases, the probability that
an answer exists decreases. Using simulations, we were able to
verify that a puzzle solution exists with overwhelming probability
when the difficulty level is less than 20. According to our
simulation results, difficulty levels below 20 are sufficient to
throttle attack traffic in most instances.

4.2. An Overview of the Protocol

As stated earlier, DoS/DDoS mitigation is best performed as
close to the source of the attack as possible to prevent a large
amount of packets from converging onto the victim [2].
Therefore, puzzles should be generated and verified at the edge
routers or border routers of an Intemet Service Provider (ISP),
rather than in the core of the Internet or at the routers close the
victim. These routers are located closest to the source of the attack
and are the optimal locations to filter attack traffic. In our scheme,
we are required to modify routers at each end of the network: the
border routers near the source of the attack (located upstream) and
the border routers near the victim of the attack (located
downstream). Thus, border routers will act as “puzzle servers”.
Throughout the remainder of this paper, these routers are referred
to as puzzle routers. Border routers near the victim of the attack
are simply designed to detect an ongoing attack, but can be used to
generate and verify puzzles if the source of a different attack is
within its own network. Methods to detect an attack are critical,
but are beyond the scope of this paper. We assume that there
exists a basic detection mechanism already in place that can
determine if a flooding attack is underway. A puzzle router also
exists near the source of the attack; this router is responsible for
generating and verifying puzzles. Thus, there is a pair of puzzle
routers at each end of the path that connects a client and a server.
In order to handle puzzle generation and verification, the puzze
routers near the source is required to store state information. The

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:11 UTC from IEEE Xplore. Restrictions apply.

puzzle router maintains a Plaintext Table for each client’s flow,
where each entry contains a 20-bit hash of the concatenated string
of the client and server IP addresses, and either the initial router
nonce, Vg, or the client’s previous puzzle solution (both 64 bits).
In addition, the puzzle router also stores the level of difficulty for
the puzzles in the 8-bit variable d. The clients all use Nk (and d) for
the first puzzle, so initially the Plaintext Table is empty. After
correct verification of the first puzzle in a given Plaintext Chain, a
corresponding entry is created in the Plaintext Table. Thus, before
the puzzle router stores state information, the client must first
solve one puzzle. This will help avoid attacks on the storage
capacity of the router. The Plaintext Chain is the sequence of
puzzle solutions that the client creates for every puzzle with initial
input from the puzzle router. :

Because the number of clients that a typical puzzle router
handles is not exorbitant, the amount of puzzle-related state
information that needs to be stored in each puzzle router is
reasonably small. For example, if each puzzle router serviced
10,000 clients with one flow each, then the size of the table would
be 105 KB, which is small enough to be readily stored in the
memory of any typical router. Existing IP-layer puzzle protocols
require a puzzle-capable router to store a greater amount of state
information. In [10], the authors use a Bloom filter stored within
the router to check for duplicate puzzle solutions from a large
number of clients and estimate that the size of the filter would be
1.1 MB. To introduce our protocol, we have summarized the steps
taken by the client and puzzle router in the event of an attack in
Table 1.

Table 1. Overview of Chained Puzzles
iPuzzle Router:

1. A puzzle router downstream near the victim detects the
attack and sends an JCMP Congestion Notification upstream
to other puzzle routers, which enables Chained Puzzles.

2. When puzzles are enabled, an ICMP Puzze Challenge is
sent to each client with the initial router nonce, N, and the
current difficulty level, d, in the IP options field. Ny is the
same for every client and is refreshed periodically.

3. The puzzle router waits for the Puzzle Transitional Period
(PTP) to expire or until it receives the first solution (IP
Option 102) before it will verify the first puzzle solution.
After puzzle verification, if it is correct, an entry is added in
the Plaintext Table with the current solution. If the solution
is incorrect, the packet is dropped. Subsequent packets use
IP Option 101 to indicate that solutions are embedded and to
indicate that these packets are part of an existing chain.
When verifying solutions received from a given client, the
puzzle router uses the current solution as the plaintext of the
next puzzle and so on.

4. Upstream puzzle routers may receive congestion
notifications from downstream puzzle routers to increase the
difficulty level or to disable puzzles. Difficulty levels are
updated by a new ICMP Puzzle Challenge to each client. A
new Ny value can be distributed in the same fashion. Puzzles
can also be disabled by sending a different ICMP message

301

back to each client. When N or d is updated, a new chain is
created and the router will wait until the PTP expires or until
it sees a new solution for the new chain represented by IP
Option 102.

Client:

1. If the client receives the Puzzle Challenge Packet from the
puzzle router with the puzzle information for the first time, it
solves the puzzle using the initial router nonce, N, and sends
its next packet with the puzzle solution embedded into the IP
options field of the header (IP Option 101).

2. For every new packet, the client uses the current puzzle
solution as the plaintext for the next XTEA6 puzze. The
client solves the puzzle and embeds the solution into the IP
header of the packet (IP Option 101). Doing so, the client
will create a chain of puzzles. ,

3. A client may receive a new Puzzle Challenge Packet with a
new N or d. It resets the chain and in the next packet
supplies the next answer (IP Option 102). Every following
packet has the IP Option 101 to indicate that a solution is
embedded and to indicate that this packet is part of an
existing chain.

4. A client may also receive an ICMP message to stop solving
puzzles. Following this message, the next packet is sent

without a solution.

Chained Puzzles allows the client to create a chain of puzzles
which enables the seamless integration of client puzzles into IP.
With the Plaintext Table, each client and puzze router is
synchronized with the same plaintext value used in the next
puzzle, which is referred to as the Plaintext Chain. If the chain is
broken, problems can arise. This issue is discussed in detail in
Section4.5.

During the PTP, packets are not verified by a puzzle router.
Thus, this period must be kept to a minimum to avoid an attacker
from having a window of opportunity to flood the rest of the
network. The length of the PTP is essentially the minimum
amount of time before the puzzle router will begin to see a puzzle
solution or a new chain of puzzle solutions from any client. To
calculate the PTP, we need to include the time it takes for the
ICMP puzzle challenge packet to reach the client and the time it
takes for one packet from the client to reach the puzzle router.
Thus, this period should be slightly greater than the round-trip
time (RTT) between the client and the puzzle router.

If a client does not receive the ICMP Puzzle Challenge,
possibly because it was offline, it is possible for a client to query
the puzzle router to receive the current N;. This will allow more
flexibility for various types of clients.

4.3. The Effectiveness of Chained Puzzles

A client puzzle at the IP layer is purposely designed to slow
down any potential attackers in the event of an attack. In order to
determine how effective Chained Puzzles would be, we need to
first examine the behavior of a typical attacker. We assume that
the attacker, or the zombie, will on average make a larger number

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:11 UTC from IEEE Xplore. Restrictions apply.

of requests than any single legitimate client. In a client puzze
protocol, the attacker has two realistic choices: to solve the puzzle
or to supply a random solution and hope that it’s comrect. An
attacker may alternate this behavior to create a more effective
attack. Thus, we can define a hybrid zombie, which both solves
and guesses the puzzles. Suppose that Q represents the probability
that it solves a given puzzle. We can also define a unique attack,
called a Guessing Attack, where the attacker deploys hybrid
zombies scattered throughout the network that guess puzzle
solutions instead of solving them.

‘When a zombie solves a puzzle per packet, its sending rate is
reduced by a factor S(k d) defined in (1). In this equation, & is the
average time it takes for the puzzle solver to execute the XTEA6
encryption function once and d is the difficulty level of the current
puzzle. The function S(k, d) is defined as the expected puzzle
solve time.

S(k,d)=k-2° o

If we let #, be the average processing time required to generate
a regular packet, we can define the worst-case sending rate of a
puzzle solver, r, using (2). In this equation, we assume that the
time it takes to solve a puzzle will be much larger than the time it
takes to generate a packet.

1 1

r= =
t,+S(k,d) ~ S(k,d)

Thus, every puzzle solving client will have the sending
rate as defined in (2). Thus, an attacker’s sending rate is
controlled by the difficulty level. Unfortunately, this
includes legitimate clients as well as the puzzle-solving
zombies. For a legitimate client that is sending less than
the rate defined in (2), the only difference it will notice is
an increase in CPU usage because of the puzzle
mechanism. If the zombie does not solve a puzzle and
supplies a random solution instead, its sending rate is not
reduced. The probability of the packet reaching
downstream depends solely on the difficulty of the
puzzle. The probability that a guessing attacker’s packet
reaches the victim is given by (3).

pp=2" (©)
Thus, when puzzles are enabled, the difficulty level needs to be
initialized to a value high enough that minimizes this probability
to combat the hybrid zombies.

@

4.4. Simulation Results

To determine how effective Chained Puzzles would be in the
event of a DDoS attack, we simulated a DDoS attack using the
Network Simulator (NS-2) [13]. We modified the simulator to
have a packet wait in a queue for a determined amount of time
(S, d) seconds) before the sender sent it to the victim. Likewise,
the first router in the path of the packet delayed forwarding the
packet due to the puzzle verification (S(k, 0) seconds). In our
simulations, we created a tree network with 100 clients and 40
attackers. The attackers sent UDP packets at a rate 10 times
higher than the legitimate clients. Each client began sending data

302

at a randomly chosen time, while the attackers coordinated their
transmissions (ie., started sending packets at the same time).
During the attack, we assumed that every legitimate client solved
puzzles.

In Figure 2, we show the Normal Packet Survival Ratio
(NPSR) [2]. NPSR is defined as the number of legitimate packets
reaching the victim divided by the total number of packets sent by
the legitimate clients during a DDoS attack. When IP (with no
puzzles) was used, the NPSR value was equal to 0.23, which
means that 77% of client packets were being dropped. In our
simulations with Chained Puzzles (CP), we varied the value of O,
the probability that an attacker solves a given puzze. We can
observe that as the difficulty level increases, the NPSR value
IMproves.

—&— Standard IP | |
—+—CP, Q=0
—4A—-CP, Q=0.5 | |
—o—CP, Q=1

—£ 1]

L s
6 10
Puzzle Difficulty Level

Figure 2. NPSR during a DDoS attack

L .
2 4

From Figure 2, it appears that a difficulty level of ten is
optimal to defend against the attack that was simulated. At this
level, there were very few packets being dropped and the client’s
throughput remained fairly high. As expected, at difficulty levels
higher than ten, clients’ throughput dropped significantly. In fact,
the sending rate of each client dropped from roughly 31 packets
per second (with standard IP) to 10 packets per second (with
puzzles on and a difficulty level of twelve). Therefore, there is a
tradeoff between the NPSR value and the client’s sending rate.

In this experiment, clients used the expected puzzle solve time
when solving a puzzle. If the solve time was less than that, then it
is likely that the NPSR would not reach one as quickly because
the sending rates of all clients and attackers would increase.
However, the NPSR would still reach one as the difficulty level
increased. During an attack, this difficulty level can be adjusted if
needed by the downstream puzzle routers by adjusting the number
of ICMP congestion notification packets that they send to
upstream puzzle routers.

4.5. Security of Chained Puzzles

A DoS attack mitigation scheme is obsolete if the scheme
itself is vulnerable to attacks or if it can be circumvented by an
attacker altogether. Here, we discuss possible attacks against
Chained Puzzles and their countermeasures.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:11 UTC from IEEE Xplore. Restrictions apply.

In our scheme, we rely on the puzzle routers downstream to be
able to detect congestion or packet loss and send the congestion
notifications upstream to the other puzzle routers. For our scheme
to work properly, these messages need to be authenticated. An
attacker could spoof a router’s identity and send ICMP congestion
notification messages to several puzzle routers, causing clients to
solve puzzles when it is not necessary. Messages from puzzle
routers to their clients also need to be authenticated to prevent an
attacker from spoofing these messages. One way to do this is to
use the technique described in [14]: when sending packets from a
puzzle router, set the TTL value to 255. Since the packet is
traveling from a first-hop router to a client, an attacker outside of
* the network could not spoof this message.

When puzzles are enabled, each client and puzzle router are
synchronized with a plaintext value. Originally this value is Np,
but after the first puzzle is solved cormrectly, this value is the
previous solution provided by that client. The router updates this
value (in the Plaintext Table) after forwarding each packet, and the
client updates this value after sending each packet. If the Plaintext
Chain is broken, the legitimate client could be denied access for its
subsequent packets, which causes another unique DoS attack. If
the difficulty level is low, an attacker could guess a puzzle solution
and spoof its IP address to a real client’s address within the same
subnet and use that client’s destination IP address in its attack
packets. This would cause an incorrect plaintext value to be
inserted in the puzzle router’s Plaintext Table. We call such an
attack a Spoofed Guessing Attack. This attack is similar to the
Guessing Attack mentioned in Section 4.3 except that it employs
intelligent IP spoofing (ie. it knows the comect range of IP
addresses to spoof and the correct destination IP address). One
way to combat this attack is to ensure that the difficulty level is
high enough to prevent an attacker from guessing correct puzzle
solutions of chains being transmitted by legitimate clients. An
attacker can guess a puzzle solution with probability of 2. For
example, if the difficulty level was set to five, the probability of an
attacker guessing a correct solution is 1/32.

When a Plaintext Chain has been broken, it will result in a
sequence of incorrect puzzles for that client. One straightforward
solution to this problem is to resynchronize that client with a new
Nz by executing a handshake procedure between the client and a
puzzle router. An attacker may exploit this approach by spoofing
the IP address of the client and then send incomrect random
solutions at the puzze router, causing continuous
resynchronizations between the client and the puzzle router. An
attack such as this would be just as effective as a flooding attack
because it would severely distupt the flow of packets exchanged
between the client and the server. A resynchronization technique
that is robust against such attacks needs to be employed.

The attacks described above are difficult to defend against.
Finding effective solutions for preventing protocol circumvention
is a challenging task that requires careful consideration of the
underlying architecture of the protocol itself.

5. Conclusions

303

In this paper, we have presented the framework of a novel
client puzzle protocol that seamlessly integrates the puzzle
handshake procedure with the IP layer. The integration was
carried out by chaining puzzle solutions. To prevent the
exploitation of the puzzle mechanism itself by attackers, we have
proposed a lightweight puzzle algorithm based on a block cipher
that enables a puzzle router to verify puzzle solutions at or near
line speed. Chained Puzzles enables the network to rate limit
attack traffic at the entry point of the network (i.e., at the border
routers), which is the optimal place to mitigate a DDoS attack.

Scalability is an important issue with virtually all client puzzle
protocols. As part of our future work, we intend to investigate the
scalability of Chained Puzzles and evaluate its effectiveness at
mitigating very large-scale DDoS flooding attacks.

6. References

P. Ferguson and D. Senie. RFC 2267 — Network Ingress Filtering:

Defeating Denial of Service Attacks which employ IP Source Address

Spoofing. January 1998.

R. K. C.Chang ‘Defending against flooding-based distributed denial-

of-service attacks: a tutorial,” in IEEE Communications Magazine.

Volume 40, Issue 10. October 2002. Pages 42-51.

A. Juels and J. Brainard. “Client Puzzles: A cryptographic defense

against connection depletion attacks,” in Proceedings of NDSS 99

(Networks and Distributed Systems Security), pages 151-165. 1999.

T. Aura, P. Nikander, and J. Leiwo. “DoS-Resistant Authentication

with Client Puzzles,” in Lecture Notes in Computer Science, Volume

2133,2001.

X. Wang and M. K. Reiter. “Defending Against Denial-of-Service

Attacks with Puzzle Auctions (Extended Abstract),” in Proceedings of

the 2003 IEEE Symposium on Security and Privacy. 2003.

B. Bencsath, 1. Vajda, and L. Buttyan. “A Game Based Analysis of the

Client Puzzle Approach to Defend Against DoS Attacks,” in

Proceedings of SoftlCOM 2003. International Conférence on Software,

Telecommumications and Computer Networks.

D. Dean and A. Stubblefield. “Using Client Puzzles to Protect TLS,”

in Proceedings of the 10" USENIX Security Symposium. August 2001.

B. Waters, J. A. Halderman, A. Juels, and E. W. Felten. “New Client

Puzzle Outsourcing Techniques for DoS Resistance,” in Proceedings

of the 1ith ACM Conference on Computer and Comnumications

Security (CCS'04). October 25-29,2004. -

W. Feng, E. Kaiser, W. Feng, A. Luu, "The Design and

Implementation of Network Puzzles," in Proceedings of INFOCOM

2005, March 2005.

X. Wang and M. K. Reiter. “Mitigating Bandwidth-Exhaustion

Attacks using Congestion Puzzles (Extended Abstract)” in

Proceedings of the 11" ACM Conference on Computer and

Communications Security (CCS "04). October 25-29, 2004.

[11] W.Feng. “The Case for TCP/IP Puzzles,” in Proceedings of the ACM
SIGCOMM 2003 Workshops. August 2003.

[12] D. Wheeler and R. Needham. “TEA Extensions,” Unpublished

1

(2]

3]

“

(5]

(6]

g

(8]

O]

(10]

Manuscript. Available at:
http//www.cl.cam.ac.uk/fip/users/djw3/xtea.ps
[13] The network simulator - ns2. Available at

http:/Awww.isi.edwhnsnam/ns/

[14] J. loannidis and S. M. Bellovin. “Implementing Pushback: Router-
Based Defense Against DDoS Attacks,” in Proceedings of NDSS'02
(Networts and Distributed Systems Security), February 2002.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:26:11 UTC from IEEE Xplore. Restrictions apply.

