
Proceedings of the 2007 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY 20-22 June 2007

Battery Polling and Trace Determination for
Bluetooth Attack Detection in Mobile Devices

Timothy K. Buennemeyer, Student Member, IEEE, Theresa M. Nelson, Student Member, IEEE,
Michael A. Gora, Randy C. Marchany, Member, IEEE, and Joseph G. Tront, Senior Member, IEEE

Abstract-This paper introduces a supporting model for a (Bluetooth) and IEEE 802.11 (Wi-Fi) attack activity that
unique Battery-Sensing Intrusion Protection System (B-SIPS) for standard IDSs are incapable of detecting [1].
mobile computers, which alerts when power changes are detected This research further examines various means to refine the
on small wireless devices. An analytical model is employed to B-SIPS detection capabilities. Smart battery polling rates,
examine the smart battery characteristics to support the
theoretical intrusion detection limits and capabilities of B-SIPS. system management bus speeds, and attack execution times
This research explores the modification of the smart battery can be used to improve the theoretical accuracy of battery-
polling rates in conjunction with the variance of malicious based anomaly detection. A methodology is then presented to
network activity. Using the results from a previous study of identify an attack, using data sampled by an oscilloscope that
optimized static polling rates to create minimum and maximum is filtered to characterize a unique trace signature.
thresholds, a dynamic polling rate algorithm was devised. This The rest of this paper is structured as follows. Section II
algorithm allowed the smart battery to gauge the network's illicit
attack density and adjust its polling rate to efficiently detect tpresents related work. Section III describes the ongoIng
attacks, while conserving battery charge life. Lastly, a trace technology convergence trend in mobile devices. Secton IV
signature methodology is presented that characterizes unique presents B-SIPS' implemented capabilities. Section V
activity for IEEE 802.15.1 (Bluetooth) attack identification. discusses the smart battery polling model's design and outlines

previous work on testing and optimizing static polling rate
Index Terms-Battery, Intrusion Detection, Wireless Security solutions. Section VI utilizes the static polling results in

formulating a dynamic solution and evaluating it in respect to
I. INTRODUCTION both the currently implemented polling rate and the optimized

T HE primary challenges in developing defensive static polling rates. Section VII introduces the attack trace
applications such as intrusion detection systems (IDSs) for determination method. Section VIII presents crafted Bluetooth

small, wireless computers are limited processing capability, attacks and traces. Lastly, Section IX provides a conclusion.
memory, and battery resources. Traditionally, network and
host-based IDSs employ rules to detect known malicious II. BACKGROUND AND RELATED WORK
activity. Anomaly detection systems (ADSs) use statistical Battery power is an important resource in the wireless
methods to establish a system profile and then trigger alerts domain, especially for small mobile devices. This presents
when that normal profile is violated. This research initiative is designers with the perplexing problem of choosing more
developing a battery-based detection system that employs security at the expense of greater power usage and potentially
mobile devices as sensors that use an instantaneous current- less service availability. Establishing secure communication
based threshold algorithm to indicate anomalous activity. channels through proper authentication could increase service
An indicator that a rogue process is being run on a device accessibility from a user's perspective, but it may further

without the knowledge of the user is an unexplained increase increase the device's computational and transmission
in the instantaneous current drawn from a device's battery. requirements, leading to faster battery drain.
This could indicate anomalous activity such as a worm spread, The Advanced Power Management (APM) specification is
virus infection, network probing, flooding, or denial of service an application programming interface which allowed computer
(DoS) attack. All of these malicious activities can cause the and Basic Input Output System (BIOS) manufacturers to
battery current to rise such that a well-designed system could include power management in their BIOS and operating
detect the illicit activity. The Battery-Sensing Intrusion systems (OSs), thus reducing energy consumption [2].
Protection System (B-SIPS) detection capability provides Subsequently, the Advanced Configuration and Power
security administrators (SAs) in a network environment with a Interface (ACPI) established an industry-standard for
complementary IDS tool. This nontraditional method can interfaces to OS directed power management on laptops,

detetaomaousbatery exhastin, EEE 80215. desktops, and servers [3]. The Smart Battery System
Implementers Forum offered an open systems communication
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monitor rechargeable battery packs and to report information B-SIPS research endeavor would not be feasible without these
to the System Management Bus (SMBus) [5] [6]. technological advances in ACPI and smart batteries.

Stajano et al. [7] suggested the idea of energy depletion
attacks in 1999, which they described as sleep deprivation III. TECHNOLOGY CONVERGENCE
torture. An emerging class of attacks, battery exhaustion and In July 2006, In-Stat research found that technology
denial of sleep attacks represent malicious situations whereby convergence was occurring with wireless devices. Although
the device's battery has been unknowingly discharged, and most mobile computer users desire to have a converged
thus the user is deprived access to information [8]. These technology device, the survey indicated that a significant
attacks exploit the power management system by inhibiting the majority of users carry multiple portable devices with
device's ability to shift into reduced power states. redundant applications and capabilities. In-Stat forecasted that

Martin et al. [8] subdivided sleep deprivation attacks against the trend to replace laptops and PDAs with smart phones is in
laptop computers. Service-requesting attacks try to connect to the early stages, but that other business forces will drive the
the mobile device repeatedly with power draining service adoption of smart phones, such as usefulness, business
requests. Benign attacks attempt to start a power demanding applications and support for the converged applications [13].
process or component operation on the host to drain its battery. Technology convergence occurs when modern technologies
Malignant attacks infiltrate the host and alter programs to that are capable of performing similar tasks merge. Examples
devour more battery resources than are typically required. of convergence are synergistic combinations of voice, data,

Racic et al. [9] demonstrated successful battery exhaustion and video into the wireless networking environment [14]. In
attacks that transited commercial cellular phone networks to the past, these capabilities were separate but today provide
exploit vulnerabilities in an insecure multimedia messaging robust possibilities for sharing resources and interacting with
service, context retention in the packet data protocol, and the others towards achieving new communication efficiencies.
paging channel. These attacks drained the device's battery, Today, most individuals have access to ubiquitous information
rendering it useless in a short period of time by keeping it in a because they can communicate through multiple means via
busy state. Most concerning is the fact that the cellular phone mobile phones, communication enhanced Personal Digital
user and network administrator were unaware that the attack Assistants (PDAs), and laptop computers. Often these
was ongoing. An attack of this nature will use more device capabilities are hosted on the same device and alternatively
power, and thus demonstrates the potential effectiveness of an communicated by cellular, Wi-Fi, or Bluetooth.
integrated battery-sensing IDS [10]. PDAs were originally designed as personal organizers but
Nash et al. [11] developed a battery constraints-based IDS became much more versatile over the years. Handheld mobile

for laptop computers aimed toward defending the system computing devices are typically used for simple calculating,
against various classes of battery exhaustion attacks. They clock and calendar, Internet access, email, and video
leveraged the laptop's robust computational power to estimate applications [14]. A smart phone is any electronic handheld
power consumption of the overall system and then adapted this device that integrates the functionality of a mobile phone,
concept on a per-process basis as a method for indicating PDA, or other information appliance. Typically, telephone
possible intrusions and rogue applications. communication functions are added to an existing PDA design.

For mobile handheld devices, Jacoby [12] developed a host- The lines are blurred on the direction from which the merger
centric Battery-Based Intrusion Detection solution. This stems, but smart phones are an excellent example of
system was comprised of three distinctive IDS applications, technology convergence. A feature that distinguishes a smart
For low power devices, the Host Intrusion Detection Engine phone from traditional cellular telephone technology is that
was a rules-based program tuned to determine battery behavior third party software applications can be installed on the device
abnormalities in the busy and idle states using static threshold [14]. These wireless communication and device categories are
levels. A complementary Source Port Intrusion Engine was at the forefront of technology convergence and are being
employed to capture network packet information during a examined in ongoing B-SIPS research on PDAs and smart
suspected attack. For robust devices, the Host Analysis phones.
Signature Trace Engine was used to capture and correlate
spectrum signature patterns using periodogram analysis to IV. B-SIPS CAPABILITIES
determine the dominant frequency and magnitude (x,y) pairs. B-SIPS provides threshold monitoring and alert notification
To our knowledge, this system presented the first feasible

a h .' ~~~~~~~~~~asa host application, which triggers during detected powerbattery-based IDS solution for handhel.Id devices, changes on small wireless devices. These hosts are employedB-SIPS research is developing an innovative battery power a s i
constraint-based model and system to help defend small .
mobile computers and smart phones. Interoperability and low Caay-e ID 1] hsdtcincpblt ssaal n
power design were inspired by the demand to significantly dsge ocmlmn xsigcmeca n pnsse
increase battery life and thus the usefulness of small mobile newr IDs B-IP corlae deic poe osmto
hosts. Battery constraint-based intrusion detection and this wt leot n iF omncto ciiy reua
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and attack activity is detected and reported to the server for V. SMART BATTERY OPTIMIZATION USING STATIC POLLING
comparisons against attack trace signatures. When a mobile device is kept in a high activity state for

The system was developed in Microsoft C# in the NET extended periods of time, the battery power is depleted faster
Compact Embedded (CE) environment [16]. The client code than normal, decreasing its expected charge life. This research
was ported to run within Windows CE for Mobile 5.0, and the seeks to protect the device's battery charge life by detecting
B-SIPS suite of tools is produced for Dell Axim X5 Iv and anomalous battery draining activities. The research goal is to
Hewlett-Packard iPAQ hx2795 PDAs. The detection tools optimize the polling period mobile devices use to determine
were employed on Cingular 8125, Verizon XV6700, Palm malicious energy consumption. An assumption was made that
Treo 700w and Samsung SCH-i730 smart phones operating once an attack is detected it is immediately eliminated, thus
with the Mobile 5.0 Phone version as well. affording each attack with a maximum duration of one smart

B-SIPS detection capability focuses on small mobile hosts battery polling time interval in the model.
that are Bluetooth and Wi-Fi enabled, so conservation of Precisely timed attacks have the potential to defeat the
power is of paramount consideration in determining what B-SIPS client detection capabilities. If the attacker knows the
information is captured, where the information is stored, when precise timing of the polling rate of the battery's chipset, then
the attack signatures are transmitted, and how intrusion the attacker could attempt to craft intrusion packets to arrive
correlation is conducted. B-SIPS alert notification is done on within those limited time windows between the battery's
the client device for the user and across the network by a polling intervals, as shown in Fig. 1. The smart battery
server for the SA. Certain power-depleting attacks such as specification recommends current sampling at least once every
floods, buffer overflows, and various DoS attacks can be five seconds [4]. So packet crafting is a possibility, although
profiled by their pulsing pattern or continuous high drain remote. B-SIPS' answer to this issue is that the attacker will
characteristics, while other attacks merely create temporary most likely be unable to manipulate both his attack's timing
spikes in power usage and are much more difficult to pattern, and the energy usage of the targeted device simultaneously.
B-SIPS is an ADS and IDS hybrid because it attempts to Since the attack is transiting a wireless environment, the timing
match power traces of some known attacks and correlate the would be even more difficult, if not impossible to control.
attack with other network IDSs. Alternatively, if the smart battery could be designed to
B-SIPS uses battery constraints and current thresholds to randomly sample its instantaneous current within that time

trigger device alerts in idle and busy states. The potential for interval and still provide comparable performance and
false positives and false negatives is of great concern. B-SIPS diagnostic readings, then this precise timing attack
strives to minimize both through dynamic threshold tuning. manipulation would be exceedingly difficult to execute [17].
Also, the system attempts to correlate alerts with packet header This leads to a noted limitation that the smart battery
information for forensic analysis. B-SIPS detects anomalous provides its diagnostic readings, at best, only once per second.
activity that exceeds the system's dynamic threshold value. At present, original equipment manufacturers (OEMs) have
The Dynamic Threshold Calculation (DTC) algorithm built this generation of smart batteries to provide a limited set
iteratively considers known device processes, backlighting, of information to the OS for managing the device's power
and system states [1]. Although false positives are a possibility usage and recharging the battery. In the future, if OEMs could
with any detection system, B-SIPS is less prone to false improve the smart battery's chipset to poll at a faster rate to
positive alerts because the DTC considers normal device accommodate the needs of battery-based IDSs, the timing
power draining activities and then only triggers an alert when attack window concern would be mitigated. This would
the threshold is exceeded by the device's response to provide the added benefit of potentially helping B-SIPS detect
anomalous activity. more attacks. The idea hinges on the fact that certain attacks
B-SIPS calculates the DTC value for comparison with the could occur at rates exceeding the battery's sampling speed, so

battery's instantaneous current reading. However, the smart those attacks could be missed. This research is being
battery only provides the instantaneous current reading once conducted to determine the typical speed of attack executions
per second, at best, due to limitations in the smart battery with regard to current device processing rates and bus speeds.
chipset. When a threshold breach occurs, B-SIPS transmits Although B-SIPS cannot solve this issue, this research may
reports to a server running the Correlation Intrusion Detection suggest the proper sampling speed for next generation smart
Engine (CIDE). The reporting continues while the DTC value batteries to further enhance the detection system's capabilities.
is exceeded. Although rapid reporting has a strong potential Polling
benefit for early detection and corrective actions by the SA, _ _
there is a clear tradeoff in that the client device will expend
additional energy to transmit a potentiaYllyhgh1 volume Of ,@ pmit @
reports that could reduce the useful battery life of the device. t= <X= -2 t n
CIDE compares the transmitted reports against a trace ,,ff
signature database, and the increased PDA energy drain is Instantaneous Current Readings

by Smart Battery (-1 to 1f9Hz Intervals)graphically represented to alert the SA in near real-time. i.1 atr oln yl iigatc idw
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With an aim towards protecting a device's battery life, rate algorithm. Lifetime results are then compared with those
detection of anomalous battery draining activities has become provided by the lHz smart battery and the optimum static
the research focus for optimizing the smart battery's polling polling rates presented in Section V.
mechanism to enhance B-SIPS' attack detection capability. A TheoreticalAdvantages and Disadvantages
This optimized polling mechanism was designed with the
mindset that, as the interval between battery information The primary advantage dynamic battery polling rate
transmissions is decreased, the time that an attack goes solutions hold over static solutions concerns network attack
undetected is reduced. density variance. Static solutions have the capability to

Using the Dell Axim X51 PDA as a testing platform for improve and optimize device lifetime for pre-defined
analysis, hardware factors included smart battery mW hours conditions only, while dynamic polling rate algorithms learn
and voltage settings, processor idle and active mW rates, and from current network activity and apply that knowledge to
required data transfer. Once these factors were set future smart battery transactions. Dynamic solutions, correctly
corresponding to the Dell Axim X51 device, lifetime was devised and implemented, should be able to optimize device
calculated. These calculations were dependent on the battery lifetimes across a vast array of network conditions.
polling rate and the number of attacks the device was Increased productivity and energy efficiency comes with the
subjected to, coined as its network attack density. drawback of complexity. Future smart batteries will need to
A MATLAB model was constructed which found the alter their hardware to accommodate the new polling rate

optimum polling rate for predetermined network attack schemes of battery-based IDSs. For static solutions, this will
frequency by calculating the battery charge life with 60,000 simply entail hard coding a new value into the system, but for
different battery polling periods, ranging from 0.00167Hz dynamic solutions the change will be more substantial. New
(once every 600 seconds) to 100Hz (once every 0.01 seconds). smart batteries will need the ability to read a rate value from
This procedure was repeated for attack densities of 0, 1, 10, the SMBus and make the appropriate alterations. The
100, 1,000, and 10,000 - 100,000, in increments of 10,000. A remainder of this section explores the lifetime benefits such a
graphical depiction of the results is shown in Fig. 2. hardware implementation could provide for mobile devices.
Once the optimum static polling rates were determined, a B. AlgorithmDevelopment andLifetime Calculations

second function used them to calculate the device charge life Motivation for the dynamic polling rate solution was taken
for each of the 15 network attack densities. Data obtained from from TCP's slow start windowing algorithm. The TCP
this function showed that none of the calculated polling rates window reduces to a minimum value when contention is
performed acceptably under all tested conditions. Table I detected [18]. Once this has occurred, the window size doubles
illustrates the battery charge life results of two mutually until it reaches a threshold. Taking a similar approach, the
exclusive lifetime enhancing techniques: overhead reduction in dynamic polling rate solution defines two threshold polling
low network attack densities by refraining from polling more rates. Mm threshold refers to the minimum time between
often than necessary, and quickly detecting and disabling battery attribute readings, while the max threshold refers to the
malicious traffic in high network densities by polling the smart TABLE I
battery more frequently. The mutual exclusion of these life NETWORK OPTIMAL POLLING RATE LIFETIMES
increasing techniques leads to the conclusion that static polling Attack Polling Lifetime in Hours
solutions are not suitable for maximizing device lifetime [17]. Density Rate For ttacks

O 1 10 100
1 0.05Hz 12.678 12.659 12.482 10.711

VI. EDUCATING SMART BATTERIES VIA DYNAMIC POLLING 100 0.50Hz 12.551 12.549 12.532 12.358
n/a lHz t 12.416 12.415 12.406 12.320

This section outlines the advantages and disadvantages that 10,000 5.56Hz 11.342 11.342 11.340 11.326
dynamic approaches bring to power draining network attack 100,000 25Hz 8.6889 8.6888 8.6886 8.6862
detection systems, as well as introducing a dynamic polling 1,000 10,000 20,000 30,000

_________________________________________________ 1 0.05Hz 0.0595 0.0595 0.0595 0.0595
A S ' ' . 100 0.50Hz 10.625 0.0595 0.0595 0.0595

12.75 n/a lHzt 11.454 2.7951 0.0595 0.0595
10,000 5.56Hz 11.184 9.7608 8.1795 6.5983

12.5 100,000 25Hz 8.6620 8.4201 8.1513 7.8826
40,000 50,000 60,000 70,000

1 0.05Hz 0.0595 0.0595 0.0595 0.0595
12.25 100 0.50Hz 0.0595 0.0595 0.0595 0.0595

E X n/a iHz t 0.0595 0.0595 0.0595 0.0595

X 12 X 11Affck 10,000 5.56Hz 5.0171 3.4358 1.8546 0.2733
"*.w 1OAftcks 100,000 25Hz 7.6138 7.3451 7.0763 6.8076

11.75 1,XX-iJ OAtticki _____ 80,000 90,000 100,000 *
i~~~~~~+ l/M1OdOAfa 1 0.05Hz 0.0595 0.0595 0.0595 *

I~~~~~~~ AltokDosl 100 0.50Hz 0.0595 0.0595 0.0595 *
11.5~~ ~ ~ ~ ~ Oi Pon RXl n/a lHz t 0.0595 0.0595 0.0595 *

5 10 15 20 25 10,000 5.56Hz 0.0595 0.0595 0.0595 *

Frequency ofSmart Battery Poll (sec) 100,000 25Hz 6.5388 6.270i 6.0013 *

Fig. 2. Effect of static battery polling on PDA lifetime. t Denotes OEM high-end implemented smart battery polling rate.
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maximum time separating battering polling events. Values for 14 C e D i
+L + +1g + + 11- 2 + Th * _ ~~~~~~~~~~~~~~~~~~~~~~~~$W"e(25H Shtatc (0.33 Hz)these parameters were taken from static polling data. The min S

threshold was set to the optimal polling rate for devices X H C H

experiencing network densities of 100,000 (25Hz); the max 10
threshold was likewise set to the polling rate optimal for
network attack densities of 1 (0.05Hz). Attack detections
cause the current polling rate to return to the min threshold. E 6

Battery polling events that do not detect attacks cause the
polling rate to be doubled, where the ceiling polling rate is .J 4 N

max threshold.a r

Dynamic polling lifetime simulations were slightly more
complex than their static polling counterparts. Attacks t 2 3 4 E 7 9 1'
detected in static polling rate solutions have lifetime values NumberofSys ktemlAtX104
independent of the precise attack timing, while the attack Fig. 4. Effect of polling approaches on smart battery lifetime.
severity on a dynamic solution is very dependant on the timing C. Results
of the attack. To model the two timing extremes encountered

in ntwoks sin dynmicpolingrate, euatonsfor An analytical model was constructed in MATLAB to
cluseteredattcks aind distribuepollingattacs,w deeluaiop calculate the lifetimes associated with mobile devices using theclustered attacks and distributed attacks were developed. dynamic algorithm. Lifetimes were determined for both

' clustered and distributed attacks. Results were then plotted, asbecause attacks are transmitted to the mobile device in a non-
interrupted stream. While the device is being attacked, the shown in Fig. 4, for comparison with the most efficient static

current polling rate remains at the min threshold. Once the polling rates, as well as the implemented smart battery polling
attacks have subsided the device is able to ramp its polling rate rate and the maximum polling rate dictated by the SMBus.

up to the max threshold, which is the most power conserving. The currently implemented smart battery polling rate
Distributed attacks, however, are the worst case scenario for lifetime performance degrades significantly for even

devices employing dynamic polling rate solutions. In marginally large network attack densities, while the lifetime

distributed dynamic attacks, the current polling rate is reduced provided by the maximum polling rate remains extremely
to the mn threshold via the detection of an attack. The next stable, though unacceptably low. Static polling rates optimized
attack is delayed just long enough for the mobile device to for network attack densities between 30,000 and 100,000
ramp up to its max threshold. Timing in this manner allows the improve the lifetime of the mobile device significantly, with a

attacks to do the most damage, because they disallow the marginal drawback of reduced lifetimes for networks with low

device from remaining at its maximum polling rate for long network attack densities. Finally, the lifetimes associated with

periods of time. Pseudocode for clustered and distributed the dynamic polling rate perform exceptionally well.

attack effects is shown in Fig. 3. Logically, attacks of this To better analyze the energy conservation achieved by using
nature fall between these extremes. the dynamic algorithm, lifetime improvement percentages were

current_mW = total mW provided by fully charged device calculated in Table II. The maximum lifetime percentage
increase for static polling represents data collected from a

while (curren-mW var>et of polling rates; this data shows the best case scenarioif ((attacks_received < network_attack_density AND clustered-attacks)vr
OR for static solutions, and therefore uses the lifetimes of the

(attacks_received < network_attack_density AND distributed__atacks optimal polling rate for each specific network attack density.AND time_betweenpolls == max threshold))
simulate a network attack The average lifetime percentage increase for dynamic polling
current_mW = current_mW - . . - r * r devices(attack_detection_time * active_bus_mW)
increment attacks received by I undergoing clustered and distributed attacks. In almost all
increment attack time by attack detection time TABLE II
reset time betweenpolls to the min threshold DYNAmic POLLING IMPACT PERCENT LIFETIME

(a.k.a. attack-detection time)
else attack ImplementeeMax. Life % Ave. Life %

non_attack_time = time_betweenpolls + . Increase for Increase for
bus transmissMon 1me Static Polling Dynamic Polling

non_attack mW = (time betweenpolls * 0 12.4010 2.346584953 2.23
idle_bus mW) + (bus transmission_time * 1 12.4000 2.088709677 2.08
active bus mW) 10 12.3920 1.565526146 2.14

total_non_attack_time = total_non_attack_time + 100 12.3050 0.43071922 2.82
non_attack_time I 000 11.4400 17 10.10

current_mW= current_mW -non_attack_mW 1,00 i40 .0785Oi
double time between polls 1,00 .992i04393i0

(...atc_deeto time 20,000 0.0595 i4,850.64i58 19,094.29 t
if time between polls exceeds max threshold 4,00.59 i,00.70 7Oii

time between polls =max_threshold 60,000 0.0595 i1i,800.34i39 i4,908.07
__ ~~~~~~~~~~~~~~~80,0000.0595 i0,896.4i794 i2,8i5.09

lifetime =(attack time+±total non attack time) converted intohours 100,000 0.0595 9,992.494492 i0,722.1ii
Fig. 3. Dynamic optimum polling rate determination algorithm. t Denotes theoretical maximum increase attainable with dynamic polling.

1-4244-1304-4/07/$25.00 ©C2007 IEEE 139

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 20,2023 at 18:22:57 UTC from IEEE Xplore.  Restrictions apply. 



Proceedings of the 2007 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY 20-22 June 2007

cases, discounting network attack densities of 0 and 1, the 2000
dynamic polling rate performed better than the optimal static 1500 -l
polling rate. The lifetime percentage increase reaches a 1250-

> 1000-

theoretical ceiling of 19,000%, when the network attack 4750 -7500-~
density reaches 20,000. This is due to the fact that the 7 250 - I
currently implemented polling rate's lifetime has decreased to 0- 1 2 2 3 3 4

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

an inoperably low value and will no longer decrease Frequency (Hz)
proportionally with the network attack density. Because both Fig. 6. Unfiltered BlueSmack attack as represented in the frequency domain.
optimized static and dynamic polling rates maintain reasonable filtering is required to ascertain the important frequencies.
lifetimes after this critical point, their lifetimes will continue to A. Data Filtering and Trace Development
decrease as the attack density increases, thus explaining why
the lifetime percentage increase begins to decline once it Tefeunydmi aai itrdi re ormvreahesaifetienetwrktack dnrensitye 20,000.

todeclineoncei

extraneous data and reduce the large set of (xy) pairs into a

Teahestheoeticrkaltamodelsexplored a dac tr more manageable trace signature. Initial filtering is used to
remove all data pairs below 100Hz, as these contain ambientsolution and presented a justification for OEMs to enhance
n

smart battery polling capabilities to further support B-SIPS' noise picked up by the amplification circuit. This is followed
detection of battery exhaustion, Bluetooth and Wi-Fi attacks. by a removal of all data pairs whose multiplicity falls below a
Were~~~~~~~ths.oesipeetd nftr mr atr threshold value that was determined by calculating the

chipsets,thes B-SIPdetsmpetntc biiy coulde improt.to frequency domain mean. The selection process for ten key data
thisepits .teatacace d inaton edto pairs is then handled by using a greatest multiplicity first
thepresntedin SheretionhV couldk beperformedationth mobe scheme. The caveat to this is that each spike in the frequency
dreventwithoutSexterna samplng and perfost-proesingthem domain is not always a single point, but rather a collection of

points with high multiplicity that occur as a result of jitter and

VII. ATTACK TRACE DETERMINATION METHOD interference. To account for extraneous data, a 50Hz window
is established around each selected data pair. No new data

It is necessary to acquire high fidelity data that represents a is mabe chosn ea w elect ion connes unti
mobile device's instantaneous current usage during a specific either ten key data pairs are selected or there are no remaining
type of activity in order to develop an attack trace signature. electin key data pairs so inig

Due to the limted capabilitis of the battey's chipset, a

selection choices. The resulting key data pairs shown in Fig. 7
Due to the limited capabilities of the battery's chipset, an are representative ofthe sampled activity and are cumulatively
external polling method, utilizing an oscilloscope, is used to referredetas a rtrace.
provide adequate data. The sampling rate is set to 10KHz with To develop a robust representation, 500 trials are compiled
a depth of 15,000 data points per trial, which is significantly Toaecop a This iseaccom s by using the first
faster than network and Bluetooth propagated attacks. A singular trace as the starting point where a population is
breakout board removes the battery from the device and stablishe ar ehe datapair. ea ofteational
provides a signal examination platform. Current usage is then singular traces is added to the initial trace. If a new key data
determined by monitoring the voltage drop experienced by a parfalls it the5 a the orIginal dat pat
precision 1Q resistor that is placed between the mobile device is said to belong to that population. If a new key data pair does
and its battery, as shown in Fig. 5.issitoblntotapouto.Ifaewkydapirosand its battery,as shown in Fig. 5. not fall within any established 50Hz area around the original

Using Lab View scripting, the raw time domain data is data pairs, it establishes a new population. After singular traces
converted into the frequency domain for examination. A are combined, the mean frequency and multiplicity is
Hanning window is applied to the raw data as a smoothing calculated for each population. The ten populations with the
mechanism for the abrupt end of the sample data. Once the largest mean multiplicity are then chosen to represent the
Hanning window has been applied, a Fast Fourier Transform is activity such that the mean frequency and mean multiplicity of
used to convert the signal into the frequency domain. The the selected populations make up the new key data pairs. The
frequency domain allows device activity to be more final step compares singular traces to the complete trace using
thoroughly analyzed by indicating where the majority of the a modified distance relationship discussed in Section B,
signal resides, as shown in Fig. 6 . However, due to noise from creating a self-comparison distribution. A trace signature is
external sources on the amplification circuit, as well as thus defined as a set of ten key (xy) data pairs and a
infrequent miscellaneous activity on the device, substantial 2000_-
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Fig. 5. Attack detection concept, using instantaneous current monitoring. Fig. 7. Key (x,y) data pairs representative of BlueSmack attack trace.
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distribution of mean distances between the key data pairs and TABLE III
the datasets used to create them. BLUETOOTH ATTACK TYPES

Attack Type Exploit Threat Level Focus

B. Trace Comparison Methodology BlueSnarf Authentication Medium Infonnation Theft
*BlueBug Hidden Channel Medium Root Control

When an unknown activity is detected on a device via a Helomoto Authentication Medium Hijacking
DTC breach, current measurements are taken for the duration BlueFish Authentication Low Surveillance

Car Whisperer Weak Passkey Low Eavesdropping
of the incident and transmitted to the CIDE for analysis. These BlueSmack Buffer Overflow High DoS
raw data measurements are filtered and converted into a Bluetooth Stack Buffer Overflow Medium - High DoS
singular trace, or trace without any accompanying distance Smasher (BSS)

tracecan be BlueSYN *
Buffer Overflow

Meim-Hg BlndDodistribution. From this point forward, the singular trace can be with SYN Flood Medium- High Blended DoS
compared against the available library of known trace BlueSYN Calling * Buffer Overflow Medium- High Blended DoSwith SYN Flood Meim-Hg BlndDo

signatures, or traces with accompanying distance distributions. PingBlender Buffer Overflow Medium - High Blended DoS
These data pairs represent frequency domain information and BlueSniff withPNg Flood Service__113luSniffNA Low Service Discovery
are similar to mass spectra, which are commonly used in RedFang NA Low Service Discovery
chemistry to identify the composition of a compound; a similar BlueScanner NA Low Fingerprinting

BTScanner NA Low Fingerprinting
methodology can be applied to the comparison of traces. BlueJacking NA Low Messaging

For mass spectra, the most common comparison method is * Denotes original attack crafting.
the spectral contrast approach, which measures the distance shipping box; therefore, devices are vulnerable from the
between corresponding points in the spectra [19]. This moment they are activated. Moreover, these devices typically
approach does not allow for comparing across frequencies, lack antivirus software, IDS, and firewall capabilities, so they
only their multiplicity. To account for activities with different, are unprotected against attack vectors. With new exploits
yet similar, frequencies all possible permutations of comparing being discovered regularly, a window of opportunity is
data pairs are taken. The permutation with the smallest average available for B-SIPS to help protect PDAs and smart phones
distance between frequencies is selected and a modified from attacks. Fig. 8 was adapted from network attack data
distance formula is applied to calculate the distance of the data collected at the CERT/CC by [20] and is overlaid with
pairs in the frequency and multiplicity dimensions. A mean for emerging threats.
the resulting distances is calculated and used in combination Bluetooth and other blended attacks will become more
with the self comparison distribution of the trace signature. An prevalent as flaws are discovered and exploited. This will offer
unknown trace can be said to be similar to a trace signature if greater opportunities to develop battery-based trace signatures,
the mean distance between their key data pairs belongs to the since Bluetooth capable devices tend to be of low powered
self comparison distribution of a trace signature within a design. Attacking exposed hosts through unsecured WPANs
desired threshold of significance. would allow the attacker direct access to the mobile device and
Each unknown trace is evaluated against the trace signatures its OS environment, completely bypassing any upstream

in the library of known activity and attacks by the CIDE. The defensive measures. This observation suggests that mobile
closest match from the library is evaluated against the devices have an increasing need for hybrid IDS protection
statistical threshold, in this case 95%. If the unknown singular such as B-SIPS.
trace falls into this confidence interval, then it is considered to While considering plausible attacks that could disrupt PDA
be a match. If not, the trace is flagged and stored in an and smart phone operations, two original DoS attacks were
unknown trace signature library containing singular and partial crafted in the lab: BlueSYN and BlueSYN Calling DoS. These
trace signatures. If they are found to match a partial signature, blended attacks were designed to saturate the test device's
they can be incorporated into the known library once a multiple communication channels' capabilities to hasten the
minimum of 500 singular traces is accrued. At that time the drain time of its battery resources. Simultaneously attacking
unknown trace signature will be flagged for review and the device with a hping2 SYN flood, affecting the Wi-Fi
possible admission to the known signature trace library, interface, and a 12ping BlueSmack flood, affecting the
assuming its representative activity can be identified. Bluetooth interface, demonstrates a blended attack that

- Intruder Knowledge B-SIPS Opportunity Window
Attack Sophistication

VIII. BLUETOOTH ATTACKS High Dery onform

Until recently, many Bluetooth device users considered --- Distributed DoS Multiple RFVectors
their systems to be safe from attack. Table III indicates that ISteathScans BlendedrAttacks
Bluetooth exploits and emerging attacks are increasing. The 2 Automated Scans , Distributed Attack Tools
ever changing state of attack vectors has opened another M PaceSoofing *\,Denia of Service
avenue for attack signature development, which encompasses Attnife/*
the characterization of Bluetooth wireless personal area Swepr tecnialkr'
network (WPAN) attacks. Small mobile computers often have LOW Backdoor Hijacking ow.led.e
Bluetooth1 capabilities enabled in di1scoverable mode out of th 190 19 00 05 Byn

Fig. 8. B-SIPS opportunity window in attack progression environment.
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8000 - to learn about the present state of the device's network and to
7000 -

6000 - adapt their polling intervals accordingly. This will, in turn,
5000 protect the battery from malicious charge depletion and could

..4000 -

3~3000- also help B-SIPS defend running device applications from
| E looo- T l | being altered, corrupted, or eavesdropped upon.

1-0 0 0 0 0 0 3 0 40 Finally, B-SIPS research investigated Bluetooth and Wi-Fi
100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency (Hz) attacks to gain an appreciation of possible attacks that could
Fig. 9. Crafted BlueSYN DoS attack trace signature for Dell Axim X5 1. confront PDAs and smart phones. The selected devices were

attempts to saturate multiple communication vectors. The SYN connected to an oscilloscope and battery readings were
flood propagated through a wired LAN to an access point sampled during various attacks. The sample was then
before finding the target device, while the Bluetooth portion of converted from the time domain to the frequency domain, and
the attack was launched from a Bluetooth adapter on the then further filtered to identify unique (x,y) pairs as indicators
notebook computer directly against the targeted device. This of the trace signature. These signatures are stored in the CIDE
previously undocumented attack was named the BlueSYN DoS, database and in the future they will be used for attack
and its trace is shown in Fig. 9. This crafted DoS attack is correlation with Snort IDS alerts.
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